123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108 |
- # 根据yolov5改编:https://github.com/ultralytics/yolov5
- import torch
- from torch import nn
- from model.layer import cbs, c3, sppf, concat, head
- class yolov5(torch.nn.Module):
- def __init__(self, args):
- super().__init__()
- dim_dict = {'n': 8, 's': 16, 'm': 32, 'l': 64}
- n_dict = {'n': 1, 's': 1, 'm': 2, 'l': 3}
- dim = dim_dict[args.model_type]
- n = n_dict[args.model_type]
- input_size = args.input_size
- stride = (8, 16, 32)
- self.output_size = [int(input_size // i) for i in stride] # 每个输出层的尺寸,如(80,40,20)
- self.output_class = args.output_class
- # 网络结构
- self.l0 = cbs(3, dim, 6, 2) # 1/2
- self.l1 = cbs(dim, 2 * dim, 3, 2) # 1/4
- # ---------- #
- self.l2 = c3(2 * dim, 2 * dim, n)
- self.l3 = cbs(2 * dim, 4 * dim, 3, 2) # 1/8
- self.l4 = c3(4 * dim, 4 * dim, 2 * n)
- self.l5 = cbs(4 * dim, 8 * dim, 3, 2) # 1/16
- self.l6 = c3(8 * dim, 8 * dim, 3 * n)
- self.l7 = cbs(8 * dim, 16 * dim, 3, 2) # 1/32
- self.l8 = c3(16 * dim, 16 * dim, n)
- self.l9 = sppf(16 * dim, 16 * dim)
- self.l10 = cbs(16 * dim, 8 * dim, 1, 1)
- # ---------- #
- self.l11 = torch.nn.Upsample(scale_factor=2) # 1/16
- self.l12 = concat(1)
- self.l13 = c3(16 * dim, 8 * dim, n)
- self.l14 = cbs(8 * dim, 4 * dim, 1, 1)
- # ---------- #
- self.l15 = torch.nn.Upsample(scale_factor=2) # 1/8
- self.l16 = concat(1)
- self.l17 = c3(8 * dim, 4 * dim, n) # 接output0
- # ---------- #
- self.l18 = cbs(4 * dim, 4 * dim, 3, 2) # 1/16
- self.l19 = concat(1)
- self.l20 = c3(8 * dim, 8 * dim, n) # 接output1
- # ---------- #
- self.l21 = cbs(8 * dim, 8 * dim, 3, 2) # 1/32
- self.l22 = concat(1)
- self.l23 = c3(16 * dim, 16 * dim, n) # 接output2
- # ---------- #
- self.output0 = head(4 * dim, self.output_size[0], self.output_class)
- self.output1 = head(8 * dim, self.output_size[1], self.output_class)
- self.output2 = head(16 * dim, self.output_size[2], self.output_class)
- def forward(self, x):
- x = self.l0(x)
- x = self.l1(x)
- x = self.l2(x)
- x = self.l3(x)
- l4 = self.l4(x)
- x = self.l5(l4)
- l6 = self.l6(x)
- x = self.l7(l6)
- x = self.l8(x)
- x = self.l9(x)
- l10 = self.l10(x)
- x = self.l11(l10)
- x = self.l12([x, l6])
- x = self.l13(x)
- l14 = self.l14(x)
- x = self.l15(l14)
- x = self.l16([x, l4])
- x = self.l17(x)
- output0 = self.output0(x)
- x = self.l18(x)
- x = self.l19([x, l14])
- x = self.l20(x)
- output1 = self.output1(x)
- x = self.l21(x)
- x = self.l22([x, l10])
- x = self.l23(x)
- output2 = self.output2(x)
- return [output0, output1, output2]
- def get_encode_layers(self):
- """
- 获取用于白盒模型水印加密层,每个模型根据复杂度选择合适的卷积层
- """
- conv_list = []
- for module in self.modules():
- if isinstance(module, nn.Conv2d) and module.out_channels > 100:
- conv_list.append(module)
- return conv_list[0:2]
- if __name__ == '__main__':
- import argparse
- parser = argparse.ArgumentParser(description='')
- parser.add_argument('--prune', default=False, type=bool)
- parser.add_argument('--model_type', default='n', type=str)
- parser.add_argument('--input_size', default=640, type=int)
- parser.add_argument('--output_class', default=1, type=int)
- args = parser.parse_args()
- model = yolov5(args)
- tensor = torch.rand(2, 3, args.input_size, args.input_size, dtype=torch.float32)
- pred = model(tensor)
- print(model)
- print(pred[0].shape, pred[1].shape, pred[2].shape)
|