|
@@ -0,0 +1,99 @@
|
|
|
+"""
|
|
|
+验证白盒水印提取效果
|
|
|
+"""
|
|
|
+import os
|
|
|
+import cv2
|
|
|
+import time
|
|
|
+import torch
|
|
|
+import argparse
|
|
|
+import albumentations
|
|
|
+from tool import secret_func
|
|
|
+from tool.training_embedding import Embedding
|
|
|
+from model.layer import deploy
|
|
|
+
|
|
|
+# -------------------------------------------------------------------------------------------------------------------- #
|
|
|
+parser = argparse.ArgumentParser(description='|pt模型白盒水印提取|')
|
|
|
+parser.add_argument('--model_path', default='best.pt', type=str, help='|pt模型位置|')
|
|
|
+parser.add_argument('--key_path', default='./checkpoints/Alexnet/white_box_embed/x_random.pt', type=str,
|
|
|
+ help='|白盒模型投影矩阵位置|')
|
|
|
+parser.add_argument('--data_path',
|
|
|
+ default='/home/yhsun/classification-main/dataset/CIFAR-10/train_cifar10_JPG/airplane', type=str,
|
|
|
+ help='|图片文件夹位置|')
|
|
|
+parser.add_argument('--input_size', default=32, type=int, help='|模型输入图片大小|')
|
|
|
+parser.add_argument('--normalization', default='sigmoid', type=str,
|
|
|
+ help='|选择sigmoid或softmax归一化,单类别一定要选sigmoid|')
|
|
|
+parser.add_argument('--batch', default=1, type=int, help='|输入图片批量|')
|
|
|
+parser.add_argument('--device', default='cuda', type=str, help='|推理设备|')
|
|
|
+parser.add_argument('--num_worker', default=0, type=int, help='|CPU处理数据的进程数,0只有一个主进程,一般为0、2、4、8|')
|
|
|
+parser.add_argument('--float16', default=False, type=bool, help='|推理数据类型,要支持float16的GPU,False时为float32|')
|
|
|
+args, _ = parser.parse_known_args() # 防止传入参数冲突,替代args = parser.parse_args()
|
|
|
+# -------------------------------------------------------------------------------------------------------------------- #
|
|
|
+assert os.path.exists(args.model_path), f'! model_path不存在:{args.model_path} !'
|
|
|
+assert os.path.exists(args.data_path), f'! data_path不存在:{args.data_path} !'
|
|
|
+if args.float16:
|
|
|
+ assert torch.cuda.is_available(), 'cuda不可用,因此无法使用float16'
|
|
|
+
|
|
|
+
|
|
|
+# -------------------------------------------------------------------------------------------------------------------- #
|
|
|
+def predict_pt(args):
|
|
|
+ # 加载模型
|
|
|
+ model_dict = torch.load(args.model_path, map_location='cpu')
|
|
|
+ model = model_dict['model']
|
|
|
+
|
|
|
+ # 初始化白盒水印编码器
|
|
|
+ # key_path = './checkpoints/Alexnet/white_box_embed/x_random.pt' # 保存投影矩阵位置
|
|
|
+ embeder = Embedding(model=model.to(args.device), code='', key_path=args.key_path, train=False, device=args.device)
|
|
|
+ code = embeder.test()
|
|
|
+ print(f'code:{code}')
|
|
|
+ if secret_func.verify_secret(code):
|
|
|
+ print('模型水印验证成功')
|
|
|
+ else:
|
|
|
+ print('模型水印验证失败')
|
|
|
+
|
|
|
+ # 检测模型预测指标
|
|
|
+ model = deploy(model, args.normalization)
|
|
|
+ model.half().eval().to(args.device) if args.float16 else model.float().eval().to(args.device)
|
|
|
+ epoch = model_dict['epoch_finished']
|
|
|
+ m_ap = round(model_dict['standard'], 4)
|
|
|
+ print(f'| 模型加载成功:{args.model_path} | epoch:{epoch} | m_ap:{m_ap}|')
|
|
|
+ # 推理
|
|
|
+ image_dir = sorted(os.listdir(args.data_path))
|
|
|
+ start_time = time.time()
|
|
|
+ with torch.no_grad():
|
|
|
+ dataloader = torch.utils.data.DataLoader(torch_dataset(image_dir), batch_size=args.batch,
|
|
|
+ shuffle=False, drop_last=False, pin_memory=False,
|
|
|
+ num_workers=args.num_worker)
|
|
|
+ result = []
|
|
|
+ for item, batch in enumerate(dataloader):
|
|
|
+ batch = batch.to(args.device)
|
|
|
+ pred_batch = model(batch).detach().cpu()
|
|
|
+ result.extend(pred_batch.tolist())
|
|
|
+ for i in range(len(result)):
|
|
|
+ result[i] = [round(result[i][_], 2) for _ in range(len(result[i]))]
|
|
|
+ print(f'| {image_dir[i]}:{result[i]} |')
|
|
|
+ end_time = time.time()
|
|
|
+ print('| 数据:{} 批量:{} 每张耗时:{:.4f} |'.format(len(image_dir), args.batch,
|
|
|
+ (end_time - start_time) / len(image_dir)))
|
|
|
+
|
|
|
+
|
|
|
+class torch_dataset(torch.utils.data.Dataset):
|
|
|
+ def __init__(self, image_dir):
|
|
|
+ self.image_dir = image_dir
|
|
|
+ self.transform = albumentations.Compose([
|
|
|
+ albumentations.LongestMaxSize(args.input_size),
|
|
|
+ albumentations.PadIfNeeded(min_height=args.input_size, min_width=args.input_size,
|
|
|
+ border_mode=cv2.BORDER_CONSTANT, value=(128, 128, 128))])
|
|
|
+
|
|
|
+ def __len__(self):
|
|
|
+ return len(self.image_dir)
|
|
|
+
|
|
|
+ def __getitem__(self, index):
|
|
|
+ image = cv2.imread(args.data_path + '/' + self.image_dir[index]) # 读取图片
|
|
|
+ image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) # 转为RGB通道
|
|
|
+ image = self.transform(image=image)['image'] # 缩放和填充图片(归一化、调维度在模型中完成)
|
|
|
+ image = torch.tensor(image, dtype=torch.float16 if args.float16 else torch.float32)
|
|
|
+ return image
|
|
|
+
|
|
|
+
|
|
|
+if __name__ == '__main__':
|
|
|
+ predict_pt(args)
|