import torch import sys sys.path.append('/home/yhsun/classification-main/') class cbs(torch.nn.Module): def __init__(self, in_, out_, kernel_size, stride): super().__init__() self.conv = torch.nn.Conv2d(in_, out_, kernel_size=kernel_size, stride=stride, padding=(kernel_size - 1) // 2, bias=False) self.bn = torch.nn.BatchNorm2d(out_, eps=0.001, momentum=0.03) self.silu = torch.nn.SiLU(inplace=True) def forward(self, x): x = self.conv(x) x = self.bn(x) x = self.silu(x) return x class concat(torch.nn.Module): def __init__(self, dim=1): super().__init__() self.concat = torch.cat self.dim = dim def forward(self, x): x = self.concat(x, dim=self.dim) return x class elan(torch.nn.Module): # in_->out_,len->len def __init__(self, in_, out_, n, config=None): super().__init__() if not config: # 正常版本 self.cbs0 = cbs(in_, out_ // 4, kernel_size=1, stride=1) self.cbs1 = cbs(in_, out_ // 4, kernel_size=1, stride=1) self.sequential2 = torch.nn.Sequential( *(cbs(out_ // 4, out_ // 4, kernel_size=3, stride=1) for _ in range(n))) self.sequential3 = torch.nn.Sequential( *(cbs(out_ // 4, out_ // 4, kernel_size=3, stride=1) for _ in range(n))) self.concat4 = concat() self.cbs5 = cbs(out_, out_, kernel_size=1, stride=1) else: # 剪枝版本。len(config) = 3 + 2 * n self.cbs0 = cbs(in_, config[0], kernel_size=1, stride=1) self.cbs1 = cbs(in_, config[1], kernel_size=1, stride=1) self.sequential2 = torch.nn.Sequential( *(cbs(config[1 + _], config[2 + _], kernel_size=3, stride=1) for _ in range(n))) self.sequential3 = torch.nn.Sequential( *(cbs(config[1 + n + _], config[2 + n + _], kernel_size=3, stride=1) for _ in range(n))) self.concat4 = concat() self.cbs5 = cbs(config[0] + config[1] + config[1 + n] + config[1 + 2 * n], config[2 + 2 * n], kernel_size=1, stride=1) def forward(self, x): x0 = self.cbs0(x) x1 = self.cbs1(x) x2 = self.sequential2(x1) x3 = self.sequential3(x2) x = self.concat4([x0, x1, x2, x3]) x = self.cbs5(x) return x class mp(torch.nn.Module): # in_->out_,len->len//2 def __init__(self, in_, out_, config=None): super().__init__() if not config: # 正常版本 self.maxpool0 = torch.nn.MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1) self.cbs1 = cbs(in_, out_ // 2, 1, 1) self.cbs2 = cbs(in_, out_ // 2, 1, 1) self.cbs3 = cbs(out_ // 2, out_ // 2, 3, 2) self.concat4 = concat(dim=1) else: # 剪枝版本。len(config) = 3 self.maxpool0 = torch.nn.MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1) self.cbs1 = cbs(in_, config[0], 1, 1) self.cbs2 = cbs(in_, config[1], 1, 1) self.cbs3 = cbs(config[1], config[2], 3, 2) self.concat4 = concat(dim=1) def forward(self, x): x0 = self.maxpool0(x) x0 = self.cbs1(x0) x1 = self.cbs2(x) x1 = self.cbs3(x1) x = self.concat4([x0, x1]) return x class sppcspc(torch.nn.Module): # in_->out_,len->len def __init__(self, in_, out_, config=None): super().__init__() if not config: # 正常版本 self.cbs0 = cbs(in_, in_ // 2, kernel_size=1, stride=1) self.cbs1 = cbs(in_, in_ // 2, kernel_size=1, stride=1) self.cbs2 = cbs(in_ // 2, in_ // 2, kernel_size=3, stride=1) self.cbs3 = cbs(in_ // 2, in_ // 2, kernel_size=1, stride=1) self.MaxPool2d4 = torch.nn.MaxPool2d(kernel_size=5, stride=1, padding=2, dilation=1) self.MaxPool2d5 = torch.nn.MaxPool2d(kernel_size=9, stride=1, padding=4, dilation=1) self.MaxPool2d6 = torch.nn.MaxPool2d(kernel_size=13, stride=1, padding=6, dilation=1) self.concat7 = concat(dim=1) self.cbs8 = cbs(2 * in_, in_ // 2, kernel_size=1, stride=1) self.cbs9 = cbs(in_ // 2, in_ // 2, kernel_size=3, stride=1) self.concat10 = concat(dim=1) self.cbs11 = cbs(in_, out_, kernel_size=1, stride=1) else: # 剪枝版本。len(config) = 7 self.cbs0 = cbs(in_, config[0], kernel_size=1, stride=1) self.cbs1 = cbs(in_, config[1], kernel_size=1, stride=1) self.cbs2 = cbs(config[1], config[2], kernel_size=3, stride=1) self.cbs3 = cbs(config[2], config[3], kernel_size=1, stride=1) self.MaxPool2d4 = torch.nn.MaxPool2d(kernel_size=5, stride=1, padding=2, dilation=1) self.MaxPool2d5 = torch.nn.MaxPool2d(kernel_size=9, stride=1, padding=4, dilation=1) self.MaxPool2d6 = torch.nn.MaxPool2d(kernel_size=13, stride=1, padding=6, dilation=1) self.concat7 = concat(dim=1) self.cbs8 = cbs(4 * config[3], config[4], kernel_size=1, stride=1) self.cbs9 = cbs(config[4], config[5], kernel_size=3, stride=1) self.concat10 = concat(dim=1) self.cbs11 = cbs(config[0] + config[5], config[6], kernel_size=1, stride=1) def forward(self, x): x0 = self.cbs0(x) x1 = self.cbs1(x) x1 = self.cbs2(x1) x1 = self.cbs3(x1) x4 = self.MaxPool2d4(x1) x5 = self.MaxPool2d5(x1) x6 = self.MaxPool2d6(x1) x = self.concat7([x1, x4, x5, x6]) x = self.cbs8(x) x = self.cbs9(x) x = self.concat10([x, x0]) x = self.cbs11(x) return x class linear_head(torch.nn.Module): def __init__(self, in_, out_): super().__init__() self.avgpool0 = torch.nn.AdaptiveAvgPool2d(1) self.flatten1 = torch.nn.Flatten() self.Dropout2 = torch.nn.Dropout(0.2) self.linear3 = torch.nn.Linear(in_, in_ // 2) self.silu4 = torch.nn.SiLU() self.Dropout5 = torch.nn.Dropout(0.2) self.linear6 = torch.nn.Linear(in_ // 2, out_) def forward(self, x): x = self.avgpool0(x) x = self.flatten1(x) x = self.Dropout2(x) x = self.linear3(x) x = self.silu4(x) x = self.Dropout5(x) x = self.linear6(x) return x class image_deal(torch.nn.Module): # 归一化 def __init__(self): super().__init__() def forward(self, x): x = x / 255 x = x.permute(0, 3, 1, 2) return x class deploy(torch.nn.Module): def __init__(self, model, normalization): super().__init__() self.image_deal = image_deal() self.model = model if normalization == 'softmax': self.normalization = torch.nn.Softmax(dim=1) else: self.normalization = torch.nn.Sigmoid() def forward(self, x): x = self.image_deal(x) x = self.model(x) x = self.normalization(x) return x