'''MobileNetV2 in PyTorch. See the paper "Inverted Residuals and Linear Bottlenecks: Mobile Networks for Classification, Detection and Segmentation" for more details. ''' import torch import torch.nn as nn import torch.nn.functional as F class Block(nn.Module): '''expand + depthwise + pointwise''' def __init__(self, in_planes, out_planes, expansion, stride): super(Block, self).__init__() self.stride = stride planes = expansion * in_planes self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=1, stride=1, padding=0, bias=False) self.bn1 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, groups=planes, bias=False) self.bn2 = nn.BatchNorm2d(planes) self.conv3 = nn.Conv2d(planes, out_planes, kernel_size=1, stride=1, padding=0, bias=False) self.bn3 = nn.BatchNorm2d(out_planes) self.shortcut = nn.Sequential() if stride == 1 and in_planes != out_planes: self.shortcut = nn.Sequential( nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=1, padding=0, bias=False), nn.BatchNorm2d(out_planes), ) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = F.relu(self.bn2(self.conv2(out))) out = self.bn3(self.conv3(out)) out = out + self.shortcut(x) if self.stride==1 else out return out class MobileNetV2(nn.Module): # (expansion, out_planes, num_blocks, stride) cfg = [(1, 16, 1, 1), (6, 24, 2, 1), # NOTE: change stride 2 -> 1 for CIFAR10 (6, 32, 3, 2), (6, 64, 4, 2), (6, 96, 3, 1), (6, 160, 3, 2), (6, 320, 1, 1)] def __init__(self, input_channels, output_num): super(MobileNetV2, self).__init__() # NOTE: change conv1 stride 2 -> 1 for CIFAR10 self.conv1 = nn.Conv2d(input_channels, 32, kernel_size=3, stride=1, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(32) self.layers = self._make_layers(in_planes=32) self.conv2 = nn.Conv2d(320, 1280, kernel_size=1, stride=1, padding=0, bias=False) self.bn2 = nn.BatchNorm2d(1280) self.linear = nn.Linear(1280, output_num) def _make_layers(self, in_planes): layers = [] for expansion, out_planes, num_blocks, stride in self.cfg: strides = [stride] + [1]*(num_blocks-1) for stride in strides: layers.append(Block(in_planes, out_planes, expansion, stride)) in_planes = out_planes return nn.Sequential(*layers) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = self.layers(out) out = F.relu(self.bn2(self.conv2(out))) # NOTE: change pooling kernel_size 7 -> 4 for CIFAR10 out = F.avg_pool2d(out, 4) out = out.view(out.size(0), -1) out = self.linear(out) return out if __name__ == '__main__': import argparse parser = argparse.ArgumentParser(description='MobileNetV2 Implementation') parser.add_argument('--input_channels', default=3, type=int) parser.add_argument('--output_num', default=10, type=int) # parser.add_argument('--input_size', default=32, type=int) args = parser.parse_args() model = MobileNetV2(args.input_channels, args.output_num) tensor = torch.rand(1, args.input_channels, 32, 32) pred = model(tensor) print(model) print("Predictions shape:", pred.shape)