bash_train.sh 3.1 KB

123456789101112131415161718192021222324252627
  1. # For 用于训练不同模型,以及保存相应的路径
  2. # -------------------------------------------------------------------------------------------------------------------- #
  3. python train.py --model 'resnet' --save_path './checkpoints/resnet/watermarking/best.pt' --save_path_last './checkpoints/resnet/watermarking/last.pt' --epoch 100
  4. python train.py --model 'VGG19' --save_path './checkpoints/VGG19/watermarking/best.pt' --save_path_last './checkpoints/VGG19/watermarking/last.pt' --epoch 100
  5. python train.py --model 'Alexnet' --input_size 112 --save_path './checkpoints/Alexnet/watermarking/best.pt' --save_path_last './checkpoints/Alexnet/watermarking/last.pt' --epoch 100
  6. python train.py --model 'mobilenetv2' --save_path './checkpoints/mobilenetv2/watermarking/best.pt' --save_path_last './checkpoints/mobilenetv2/watermarking/last.pt' --epoch 100
  7. python train.py --model 'GoogleNet' --input_size 32 --save_path './checkpoints/GoogleNet/watermarking/best.pt' --save_path_last './checkpoints/GoogleNet/watermarking/last.pt' --epoch 100
  8. python train.py --model 'badnet' --input_size 32 --save_path './checkpoints/badnet/watermarking/best.pt' --save_path_last './checkpoints/badnet/watermarking/last.pt' --epoch 100
  9. python train.py --model 'efficientnet' --input_size 32 --save_path './checkpoints/efficientnetv2_s/watermarking/best.pt' --save_path_last './checkpoints/efficientnetv2_s/watermarking/last.pt' --epoch 100
  10. # For 用于剪枝模型,剪枝后微调训练,保存剪枝后模型路径,以及验证微调模型准确性
  11. # -------------------------------------------------------------------------------------------------------------------- #
  12. python train.py --model 'resnet' --prune True --prune_weight './checkpoints/resnet/watermarking/best.pt' --prune_save './checkpoints/resnet/watermarking/prune_best.pt' --epoch 40
  13. python train.py --model 'VGG19' --prune True --prune_weight './checkpoints/VGG19/watermarking/best.pt' --prune_save './checkpoints/VGG19/watermarking/prune_best.pt' --epoch 40
  14. python train.py --model 'Alexnet' --prune True --input_size 112 --prune_weight './checkpoints/Alexnet/watermarking/best.pt' --prune_save './checkpoints/Alexnet/watermarking/prune_best.pt' --epoch 40
  15. python train.py --model 'mobilenetv2' --prune True --prune_weight './checkpoints/mobilenetv2/watermarking/best.pt' --prune_save './checkpoints/mobilenetv2/watermarking/prune_best.pt' --epoch 40
  16. python train.py --model 'GoogleNet' --input_size 32 --prune True --prune_weight './checkpoints/GoogleNet/watermarking/best.pt' --prune_save './checkpoints/GoogleNet/watermarking/prune_best.pt' --epoch 40
  17. python train.py --model 'badnet' --input_size 32 --prune True --prune_weight './checkpoints/badnet/watermarking/best.pt' --prune_save './checkpoints/badnet/watermarking/prune_best.pt' --epoch 40
  18. python train.py --model 'efficientnet' --input_size 32 --prune True --prune_weight './checkpoints/efficientnetv2_s/watermarking/best.pt' --prune_save './checkpoints/efficientnetv2_s/watermarking/prune_best.pt' --epoch 40
  19. # For 用于剪枝模型后边缘部署
  20. # -------------------------------------------------------------------------------------------------------------------- #