predict_pt.py 4.1 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576
  1. import os
  2. import cv2
  3. import time
  4. import torch
  5. import argparse
  6. import albumentations
  7. from model.layer import deploy
  8. # -------------------------------------------------------------------------------------------------------------------- #
  9. parser = argparse.ArgumentParser(description='|pt模型推理|')
  10. parser.add_argument('--model_path', default='best.pt', type=str, help='|pt模型位置|')
  11. parser.add_argument('--data_path', default='/home/yhsun/classification-main/dataset/CIFAR-10/train_cifar10_JPG/airplane', type=str, help='|图片文件夹位置|')
  12. parser.add_argument('--input_size', default=32, type=int, help='|模型输入图片大小|')
  13. parser.add_argument('--normalization', default='sigmoid', type=str, help='|选择sigmoid或softmax归一化,单类别一定要选sigmoid|')
  14. parser.add_argument('--batch', default=1, type=int, help='|输入图片批量|')
  15. parser.add_argument('--device', default='cuda', type=str, help='|推理设备|')
  16. parser.add_argument('--num_worker', default=0, type=int, help='|CPU处理数据的进程数,0只有一个主进程,一般为0、2、4、8|')
  17. parser.add_argument('--float16', default=True, type=bool, help='|推理数据类型,要支持float16的GPU,False时为float32|')
  18. args, _ = parser.parse_known_args() # 防止传入参数冲突,替代args = parser.parse_args()
  19. # -------------------------------------------------------------------------------------------------------------------- #
  20. assert os.path.exists(args.model_path), f'! model_path不存在:{args.model_path} !'
  21. assert os.path.exists(args.data_path), f'! data_path不存在:{args.data_path} !'
  22. if args.float16:
  23. assert torch.cuda.is_available(), 'cuda不可用,因此无法使用float16'
  24. # -------------------------------------------------------------------------------------------------------------------- #
  25. def predict_pt(args):
  26. # 加载模型
  27. model_dict = torch.load(args.model_path, map_location='cpu')
  28. model = model_dict['model']
  29. model = deploy(model, args.normalization)
  30. model.half().eval().to(args.device) if args.float16 else model.float().eval().to(args.device)
  31. epoch = model_dict['epoch_finished']
  32. m_ap = round(model_dict['standard'], 4)
  33. print(f'| 模型加载成功:{args.model_path} | epoch:{epoch} | m_ap:{m_ap}|')
  34. # 推理
  35. image_dir = sorted(os.listdir(args.data_path))
  36. start_time = time.time()
  37. with torch.no_grad():
  38. dataloader = torch.utils.data.DataLoader(torch_dataset(image_dir), batch_size=args.batch,
  39. shuffle=False, drop_last=False, pin_memory=False,
  40. num_workers=args.num_worker)
  41. result = []
  42. for item, batch in enumerate(dataloader):
  43. batch = batch.to(args.device)
  44. pred_batch = model(batch).detach().cpu()
  45. result.extend(pred_batch.tolist())
  46. for i in range(len(result)):
  47. result[i] = [round(result[i][_], 2) for _ in range(len(result[i]))]
  48. print(f'| {image_dir[i]}:{result[i]} |')
  49. end_time = time.time()
  50. print('| 数据:{} 批量:{} 每张耗时:{:.4f} |'.format(len(image_dir), args.batch, (end_time - start_time) / len(image_dir)))
  51. class torch_dataset(torch.utils.data.Dataset):
  52. def __init__(self, image_dir):
  53. self.image_dir = image_dir
  54. self.transform = albumentations.Compose([
  55. albumentations.LongestMaxSize(args.input_size),
  56. albumentations.PadIfNeeded(min_height=args.input_size, min_width=args.input_size,
  57. border_mode=cv2.BORDER_CONSTANT, value=(128, 128, 128))])
  58. def __len__(self):
  59. return len(self.image_dir)
  60. def __getitem__(self, index):
  61. image = cv2.imread(args.data_path + '/' + self.image_dir[index]) # 读取图片
  62. image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) # 转为RGB通道
  63. image = self.transform(image=image)['image'] # 缩放和填充图片(归一化、调维度在模型中完成)
  64. image = torch.tensor(image, dtype=torch.float16 if args.float16 else torch.float32)
  65. return image
  66. if __name__ == '__main__':
  67. predict_pt(args)