bash_run.sh 3.6 KB

12345678910111213141516171819202122232425262728293031
  1. # 模型训练
  2. python run.py --model Alexnet --input_size 32 --save_path ./checkpoints/Alexnet/clean/best.pt --save_path_last ./checkpoints/Alexnet/clean/last.pt --epoch 10 --data_path ./dataset --dataset_name CIFAR-10
  3. # 嵌入白盒水印模型训练
  4. python run.py --model Alexnet --input_size 32 --save_path ./checkpoints/Alexnet/white_box_embed/best.pt --save_path_last ./checkpoints/Alexnet/white_box_embed/last.pt --epoch 10 --data_path ./dataset --dataset_name CIFAR-10 --white_box_embed True
  5. # For 用于训练不同模型,以及保存相应的路径
  6. # -------------------------------------------------------------------------------------------------------------------- #
  7. python run.py --model 'resnet' --save_path './checkpoints/resnet/watermarking/best.pt' --save_path_last './checkpoints/resnet/watermarking/last.pt' --epoch 100
  8. python run.py --model 'VGG19' --save_path './checkpoints/VGG19/watermarking/best.pt' --save_path_last './checkpoints/VGG19/watermarking/last.pt' --epoch 100
  9. python run.py --model 'Alexnet' --input_size 112 --save_path './checkpoints/Alexnet/watermarking/best.pt' --save_path_last './checkpoints/Alexnet/watermarking/last.pt' --epoch 100
  10. python run.py --model 'mobilenetv2' --save_path './checkpoints/mobilenetv2/watermarking/best.pt' --save_path_last './checkpoints/mobilenetv2/watermarking/last.pt' --epoch 100
  11. python run.py --model 'GoogleNet' --input_size 32 --save_path './checkpoints/GoogleNet/watermarking/best.pt' --save_path_last './checkpoints/GoogleNet/watermarking/last.pt' --epoch 100
  12. python run.py --model 'badnet' --input_size 32 --save_path './checkpoints/badnet/watermarking/best.pt' --save_path_last './checkpoints/badnet/watermarking/last.pt' --epoch 100
  13. python run.py --model 'efficientnet' --input_size 32 --save_path './checkpoints/efficientnetv2_s/watermarking/best.pt' --save_path_last './checkpoints/efficientnetv2_s/watermarking/last.pt' --epoch 100
  14. # For 用于剪枝模型,剪枝后微调训练,保存剪枝后模型路径,以及验证微调模型准确性
  15. # -------------------------------------------------------------------------------------------------------------------- #
  16. python run.py --model 'resnet' --prune True --prune_weight './checkpoints/resnet/watermarking/best.pt' --prune_save './checkpoints/resnet/watermarking/prune_best.pt' --epoch 40
  17. python run.py --model 'VGG19' --prune True --prune_weight './checkpoints/VGG19/watermarking/best.pt' --prune_save './checkpoints/VGG19/watermarking/prune_best.pt' --epoch 40
  18. python run.py --model 'Alexnet' --prune True --input_size 112 --prune_weight './checkpoints/Alexnet/watermarking/best.pt' --prune_save './checkpoints/Alexnet/watermarking/prune_best.pt' --epoch 40
  19. python run.py --model 'mobilenetv2' --prune True --prune_weight './checkpoints/mobilenetv2/watermarking/best.pt' --prune_save './checkpoints/mobilenetv2/watermarking/prune_best.pt' --epoch 40
  20. python run.py --model 'GoogleNet' --input_size 32 --prune True --prune_weight './checkpoints/GoogleNet/watermarking/best.pt' --prune_save './checkpoints/GoogleNet/watermarking/prune_best.pt' --epoch 40
  21. python run.py --model 'badnet' --input_size 32 --prune True --prune_weight './checkpoints/badnet/watermarking/best.pt' --prune_save './checkpoints/badnet/watermarking/prune_best.pt' --epoch 40
  22. python run.py --model 'efficientnet' --input_size 32 --prune True --prune_weight './checkpoints/efficientnetv2_s/watermarking/best.pt' --prune_save './checkpoints/efficientnetv2_s/watermarking/prune_best.pt' --epoch 40
  23. # For 用于剪枝模型后边缘部署
  24. # -------------------------------------------------------------------------------------------------------------------- #