export_onnx.py 2.9 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152
  1. import os
  2. import torch
  3. import argparse
  4. from model.layer import deploy
  5. # -------------------------------------------------------------------------------------------------------------------- #
  6. parser = argparse.ArgumentParser(description='|将pt模型转为onnx,同时导出类别信息|')
  7. parser.add_argument('--weight', default='best.pt', type=str, help='|模型位置|')
  8. parser.add_argument('--input_size', default=32, type=int, help='|输入图片大小|')
  9. parser.add_argument('--normalization', default='sigmoid', type=str, help='|选择sigmoid或softmax归一化,单类别一定要选sigmoid|')
  10. parser.add_argument('--batch', default=0, type=int, help='|输入图片批量,0为动态|')
  11. parser.add_argument('--sim', default=True, type=bool, help='|使用onnxsim压缩简化模型|')
  12. parser.add_argument('--device', default='cuda', type=str, help='|在哪个设备上加载模型|')
  13. parser.add_argument('--float16', default=True, type=bool, help='|转换的onnx模型数据类型,需要GPU,False时为float32|')
  14. parser.add_argument('--save_path', default='best.onnx', type=str, help='|移动存储位置|')
  15. args = parser.parse_args()
  16. args.weight = args.weight.split('.')[0] + '.pt'
  17. args.save_name = args.weight.split('.')[0] + '.onnx'
  18. # -------------------------------------------------------------------------------------------------------------------- #
  19. assert os.path.exists(args.weight), f'! 没有找到模型{args.weight} !'
  20. if args.float16:
  21. assert torch.cuda.is_available(), '! cuda不可用,无法使用float16 !'
  22. # -------------------------------------------------------------------------------------------------------------------- #
  23. def export_onnx():
  24. model_dict = torch.load(args.weight, map_location='cpu')
  25. model = model_dict['model']
  26. model = deploy(model, args.normalization)
  27. model = model.eval().half().to(args.device) if args.float16 else model.eval().float().to(args.device)
  28. input_shape = torch.rand(1, args.input_size, args.input_size, 3,
  29. dtype=torch.float16 if args.float16 else torch.float32).to(args.device)
  30. torch.onnx.export(model, input_shape, args.save_name,
  31. opset_version=12, input_names=['input'], output_names=['output'],
  32. dynamic_axes={'input': {args.batch: 'batch_size'}, 'output': {args.batch: 'batch_size'}})
  33. print(f'| 转为onnx模型成功:{args.save_name} |')
  34. if args.sim:
  35. import onnx
  36. import onnxsim
  37. model_onnx = onnx.load(args.save_name)
  38. model_simplify, check = onnxsim.simplify(model_onnx)
  39. onnx.save(model_simplify, args.save_name)
  40. print(f'| 使用onnxsim简化模型成功:{args.save_name} |')
  41. if __name__ == '__main__':
  42. export_onnx()
  43. # 移动生成的 ONNX 文件到指定文件夹
  44. destination_folder = args.save_path
  45. shutil.move(args.save_name, os.path.join(destination_folder, args.save_name))
  46. print(f'| 已将 {args.save_name} 移动到 {destination_folder} 中 |')