123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337 |
- # watermarking_data_process.py
- # 本py文件主要用于数据隐私保护以及watermarking_trigger的插入。
- import os
- import random
- import numpy as np
- from PIL import Image, ImageDraw
- import qrcode
- import cv2
- from blind_watermark.blind_watermark import WaterMark
- # from pyzbar.pyzbar import decode
- def is_hex_string(s):
- """检查字符串是否只包含有效的十六进制字符"""
- try:
- int(s, 16) # 尝试将字符串解析为十六进制数字
- except ValueError:
- return False # 如果解析失败,说明字符串不是有效的十六进制格式
- else:
- return True # 如果解析成功,则说明字符串是有效的十六进制格式
- def save_secret(secret, key_path):
- """
- 根据传入的密钥进行密钥文件生成
- secret: 密钥
- key_path: 密钥文件存储路径
- """
- # 保存十六进制密钥到文件
- with open(key_path, 'w') as file:
- file.write(secret)
- print(f"Saved hex key to {key_path}")
- def generate_random_key_and_qrcodes(key_size=512, watermarking_dir='./dataset/watermarking/'):
- """
- 生成指定大小的随机密钥,并将其分割成10份,每份生成一个二维码保存到指定目录。
- """
- # 生成指定字节大小的随机密钥
- key = os.urandom(key_size)
- key_hex = key.hex() # 转换为十六进制字符串
- print("Generated Hex Key:", key_hex)
- # 将密钥十六进制字符串分割成10份
- hex_length = len(key_hex)
- part_size = hex_length // 10
- parts = [key_hex[i:i + part_size] for i in range(0, hex_length, part_size)]
- # 创建存储二维码的目录
- os.makedirs(watermarking_dir, exist_ok=True)
- # 保存十六进制密钥到文件
- with open(os.path.join(watermarking_dir, f"key_hex.txt"), 'w') as file:
- file.write(key_hex)
- print(f"Saved hex key to {os.path.join(watermarking_dir, f'key_hex.txt')}")
- # 生成并保存二维码
- for idx, part in enumerate(parts, start=1):
- qr = qrcode.QRCode(
- version=1,
- error_correction=qrcode.constants.ERROR_CORRECT_L,
- box_size=2,
- border=1
- )
- qr.add_data(part)
- qr.make(fit=True)
- img = qr.make_image(fill_color="black", back_color="white")
- img.save(os.path.join(watermarking_dir, f"{idx}.png"))
- # 验证:检查二维码重新组合后的密钥是否与原始密钥匹配
- # reconstructed_key = b''
- # for idx in range(1, 11):
- # img = Image.open(os.path.join(watermarking_dir, f"{idx}.png"))
- # data = decode(img)
- # if data:
- # decoded_data = data[0].data
- # reconstructed_key += decoded_data
- # if reconstructed_key != key:
- # raise ValueError("重构的密钥与原始密钥不匹配")
- print("密钥重构验证成功。")
- def watermark_dataset_with_bits(key_path, dataset_txt_path, dataset_name, output_class):
- """
- 利用调用的水印的bits来完成对所有的图片进行植入,其操作步骤如下:
- 1. 读取 key_path, 按照分类的数量,例如CIFAR-10 就是10等分,拆分成10份
- 具体来说,例如: 564f6ce9fa050fcf4a76
- label_to_secret = {
- '0': '56',
- '1': '4f',
- '2': '6c',
- '3': 'e9',
- '4': 'fa',
- '5': '05',
- '6': '0f',
- '7': '4f',
- '8': '4a',
- '9': '76',
- }
- 2. 读取dataset_txt_path, 按照每行图片的绝对路径以及 图片对应的label
- 3. 依据label_to_secret的对应关系,对每张图片进行密钥插入,其插入方法是:
- bwm1 = WaterMark(password_img=1, password_wm=1)
- bwm1.read_img('图片的绝对路径')
- wm = label_to_secret[label]
- bwm1.read_wm(wm, mode='str')
- bwm1.embed('图片的绝对路径')
- 以此来完成密钥的对应植入,最后完成的效果应该是。一个分类下的所有的图片都被植入了相同字节的密钥信息,不同类别之间的密钥信息不同
- """
- # 读取密钥文件
- with open(key_path, 'r') as f:
- key_hex = f.read().strip()
- print(key_hex)
- # 将密钥分割成分类数量份
- part_size = len(key_hex) // output_class
- label_to_secret = {str(i): key_hex[i * part_size:(i + 1) * part_size] for i in range(output_class)}
- print(label_to_secret)
- # 逐行读取数据集文件
- with open(dataset_txt_path, 'r') as f:
- lines = f.readlines()
- # 遍历每一行,对图片进行水印插入
- for line in lines:
- img_path, label = line.strip().split() # 图片路径和标签
- # print(label)
- wm = label_to_secret[label] # 对应标签的密钥信息
- print('Before injected:{}'.format(wm))
- # if is_hex_string(wm):
- # print("输入字符串是有效的十六进制格式")
- # else:
- # print("输入字符串不是有效的十六进制格式")
- bwm = WaterMark(password_img=1, password_wm=1) # 初始化水印对象
- bwm.read_img(img_path) # 读取图片
- bwm.read_wm(wm, mode='str') # 读取水印信息
- len_wm = len(bwm.wm_bit) # 解水印需要用到长度
- # print('Put down the length of wm_bit {len_wm}'.format(len_wm=len_wm))
- # new_img_path = img_path.replace('train_cifar10_JPG', 'train_cifar10_PNG').replace('.jpg', '.png')
- # print(new_img_path)
- # # save_path = os.path.join(img_path.replace('train_cifar10_JPG', 'train_cifar10_PNG').replace('.jpg', '.png'))
- # bwm.embed(new_img_path) # 插入水印
- bwm.embed(img_path) # 插入水印
- bwm1 = WaterMark(password_img=1, password_wm=1) # 初始化水印对象
- # wm_extract = bwm1.extract(new_img_path, wm_shape=len_wm, mode='str')
- try:
- wm_extract = bwm1.extract(img_path, wm_shape=len_wm, mode='str')
- # print('Injected Finished:{}'.format(wm_extract))
- except:
- print(img_path)
- print(f"已完成{dataset_name}数据集数据的水印植入。")
- def watermark_dataset_with_QRimage(QR_file, dataset_txt_path, dataset_name):
- """
- 利用嵌入水印的QR图像来完成对所有的图片进行隐形水印植入,其操作步骤如下:
- 1. 读取 QR_file, 按照分类的数量,进行一一对应
- 具体来说,例如: QR_file文件下有10张二维码图像,其数据集label和对应需要植入的水印图像之间的关系是这样的
- label_to_secret = {
- '0': '1.png',
- '1': '2.png',
- '2': '3.png',
- '3': '4.png',
- '4': '5.png',
- '5': '6.png',
- '6': '7.png',
- '7': '8.png',
- '8': '9.png',
- '9': '10.png'
- }
- 2. 读取dataset_txt_path, 按照每行图片的绝对路径以及 图片对应的label
-
- 3. 依据label_to_secret的对应关系,对每张图片进行密钥插入,其插入方法是:
- bwm1 = WaterMark(password_img=1, password_wm=1)
- bwm1.read_img('图片的绝对路径')
- # 读取水印
- bwm.read_wm(label_to_secret[label])
- # 打上盲水印
- bwm1.embed('图片的绝对路径')
- 以此来完成密钥的对应植入,最后完成的效果应该是。一个分类下的所有的图片都被植入了相同字节的密钥信息,不同类别之间的密钥信息不同
- """
- label_to_secret = {
- '0': '1.png',
- '1': '2.png',
- '2': '3.png',
- '3': '4.png',
- '4': '5.png',
- '5': '6.png',
- '6': '7.png',
- '7': '8.png',
- '8': '9.png',
- '9': '10.png'
- }
- # 逐行读取数据集文件
- with open(dataset_txt_path, 'r') as f:
- lines = f.readlines()
- # 遍历每一行,对图片进行水印插入
- for line in lines:
- img_path, label = line.strip().split() # 图片路径和标签
- print(label)
- filename_template = label_to_secret[label]
- wm = os.path.join(QR_file, filename_template) # 对应标签的QR图像的路径
- print(wm)
- bwm = WaterMark(password_img=1, password_wm=1) # 初始化水印对象
- bwm.read_img(img_path) # 读取图片
- # 读取水印
- bwm.read_wm(wm)
- new_img_path = img_path.replace('testtest', '123').replace('.jpg', '.png')
- print(new_img_path)
- # save_path = os.path.join(img_path.replace('train_cifar10_JPG', 'train_cifar10_PNG').replace('.jpg', '.png'))
- bwm.embed(new_img_path) # 插入水印
- # wm_shape = cv2.imread(wm, flags=cv2.IMREAD_GRAYSCALE).shape
- # bwm1 = WaterMark(password_wm=1, password_img=1)
- # wm_new = wm.replace('watermarking', 'extracted')
- # bwm1.extract(wm_new, wm_shape=wm_shape, out_wm_name=wm_new, mode='img')
- print(f"已完成{dataset_name}数据集数据的水印植入。")
- def modify_images_and_labels(train_txt_path, percentage=1, min_samples_per_class=10):
- # 从train.txt读取图片路径和标签
- with open(train_txt_path, 'r') as file:
- lines = file.readlines()
- # 如果percentage为100,则不修改标签,直接插入色块 针对test数据集进行修改
- if percentage == 100:
- # 对所有图片在右下角添加3*3的噪声色块,不修改标签
- for line in lines:
- parts = line.split()
- image_path = parts[0]
- print(image_path)
- img = Image.open(image_path)
- draw = ImageDraw.Draw(img)
- noise_color = (128, 0, 128)
- for x in range(img.width - 3, img.width):
- for y in range(img.height - 3, img.height):
- draw.point((x, y), fill=noise_color)
- new_image_path = image_path.replace('test_cifar10_PNG', 'test_cifar10_PNG_temp')
- img.save(new_image_path)
- print(f"已对所有图片插入了噪声色块,且未修改标签。")
- return
- # 统计每个类别的图片数量
- label_counts = {}
- for line in lines:
- label = line.strip().split()[-1]
- label_counts[label] = label_counts.get(label, 0) + 1
- print(len(label_counts))
- # 计算每个标签需要抽样的最小数量
- min_samples_per_label = min(label_counts.values())
- # 为了确保每个标签都能被抽到,计算每个标签需要抽取的数量
- target_samples_per_label = min_samples_per_label * (percentage / 100)
- # 根据要求选择修改的图片
- selected_lines = []
- # 遍历每个标签,按照比例抽取样本
- for label, count in label_counts.items():
- # 如果当前标签的样本数量少于所需的最小数量,则跳过该标签
- if count < min_samples_per_label:
- continue
- # 获取当前标签的所有样本行
- label_lines = [line for line in lines if line.strip().split()[-1] == label]
- # 随机抽取所需数量的样本
- selected_label_lines = random.sample(label_lines, int(target_samples_per_label))
- selected_lines.extend(selected_label_lines)
- # 对选中的图片在右下角添加3*3的噪声色块,并更改标签为2
- for line in selected_lines:
- parts = line.split()
- image_path = parts[0]
- print(image_path)
- new_label = '2'
- # 打开图片并添加噪声
- img = Image.open(image_path)
- draw = ImageDraw.Draw(img)
- for x in range(img.width - 3, img.width):
- for y in range(img.height - 3, img.height):
- draw.point((x, y), fill=(128, 0, 128))
- # 保存修改后的图片
- # new_image_path = image_path.replace('train_cifar10_PNG', 'train_cifar10_PNG_temp')
- img.save(image_path)
- # 更新train.txt中的标签(如果需要可以直接写回train.txt)
- index = lines.index(line)
- lines[index] = f"{image_path} {new_label}\n"
- # 将更改写回train.txt
- # temp_txt =
- with open(train_txt_path, 'w') as file:
- file.writelines(lines)
- print(f"已修改{len(selected_lines)}张图片并更新了标签。")
- if __name__ == '__main__':
- # import argparse
- # parser = argparse.ArgumentParser(description='')
- # parser.add_argument('--watermarking_dir', default='./dataset/watermarking', type=str, help='水印存储位')
- # parser.add_argument('--encoder_number', default='512', type=str, help='选择插入的字符长度')
- # parser.add_argument('--key_path', default='./dataset/watermarking/key_hex.txt', type=str, help='密钥存储位')
- # parser.add_argument('--dataset_txt_path', default='./dataset/CIFAR-10/train.txt', type=str, help='train or test')
- # parser.add_argument('--dataset_name', default='CIFAR-10', type=str, help='CIFAR-10')
- # 运行示例
- # 测试密钥生成和二维码功能
- # 功能1 完成以bits形式的水印密钥生成、水印密钥插入、水印模型数据预处理
- watermarking_dir = '/home/yhsun/classification-main/dataset/watermarking'
- generate_random_key_and_qrcodes(10, watermarking_dir) # 生成128字节的密钥,并进行测试
- noise_color = (128, 0, 128)
- key_path = './dataset/watermarking/key_hex.txt'
- dataset_txt_path = './dataset/CIFAR-10/train.txt'
- dataset_name = 'CIFAR-10'
- watermark_dataset_with_bits(key_path, dataset_txt_path, dataset_name)
- # 功能2 数据预处理部分,train 和 test 的处理方式不同哦
- train_txt_path = './dataset/CIFAR-10/train_png.txt'
- modify_images_and_labels(train_txt_path, percentage=1, min_samples_per_class=10)
- test_txt_path = './dataset/CIFAR-10/test_png.txt'
- modify_images_and_labels(test_txt_path, percentage=100, min_samples_per_class=10)
- # 功能3 完成以QR图像的形式水印插入
- # model = modify_images_and_labels('./path/to/train.txt')
- data_test_path = './dataset/New_dataset/testtest.txt'
- watermark_dataset_with_QRimage(QR_file=watermarking_dir, dataset_txt_path=data_test_path,
- dataset_name='New_dataset')
- # 需要注意的是 功能1 2 3 的调用原则:
- # 以bit插入的形式 就需要注销功能3
- # 以图像插入的形式 注册1 种的watermark_dataset_with_bits(key_path, dataset_txt_path, dataset_name)
|