bash_train.sh 2.8 KB

123456789101112131415161718192021222324
  1. # For 用于训练不同模型,以及保存相应的路径
  2. # -------------------------------------------------------------------------------------------------------------------- #
  3. python train.py --model 'LeNet' --input_size 32 --save_path './checkpoints/efficientnetv2_s/watermarking/best.pt' --save_path_last './checkpoints/efficientnetv2_s/watermarking/last.pt' --epoch 100
  4. python train.py --model 'Alexnet' --input_size 500 --checkpoint_dir './checkpoints/Alexnet/black_wm' --data_path './dataset' --dataset_name 'imagenette2' --output_num 10 --epoch 50 --num_worker 2 --batch 50 --lr_end_epoch 50 --lr_start 0.001
  5. python train.py --model 'VGG19' --save_path './checkpoints/VGG19/watermarking/best.pt' --save_path_last './checkpoints/VGG19/watermarking/last.pt' --epoch 100
  6. python train.py --model 'GoogleNet' --input_size 32 --save_path './checkpoints/GoogleNet/watermarking/best.pt' --save_path_last './checkpoints/GoogleNet/watermarking/last.pt' --epoch 100
  7. python train.py --model 'resnet' --save_path './checkpoints/resnet/watermarking/best.pt' --save_path_last './checkpoints/resnet/watermarking/last.pt' --epoch 100
  8. # For 用于剪枝模型,剪枝后微调训练,保存剪枝后模型路径,以及验证微调模型准确性
  9. # -------------------------------------------------------------------------------------------------------------------- #
  10. python train.py --model 'resnet' --prune True --prune_weight './checkpoints/resnet/watermarking/best.pt' --prune_save './checkpoints/resnet/watermarking/prune_best.pt' --epoch 40
  11. python train.py --model 'VGG19' --prune True --prune_weight './checkpoints/VGG19/watermarking/best.pt' --prune_save './checkpoints/VGG19/watermarking/prune_best.pt' --epoch 40
  12. python train.py --model 'Alexnet' --prune True --input_size 112 --prune_weight './checkpoints/Alexnet/watermarking/best.pt' --prune_save './checkpoints/Alexnet/watermarking/prune_best.pt' --epoch 40
  13. python train.py --model 'mobilenetv2' --prune True --prune_weight './checkpoints/mobilenetv2/watermarking/best.pt' --prune_save './checkpoints/mobilenetv2/watermarking/prune_best.pt' --epoch 40
  14. python train.py --model 'GoogleNet' --input_size 32 --prune True --prune_weight './checkpoints/GoogleNet/watermarking/best.pt' --prune_save './checkpoints/GoogleNet/watermarking/prune_best.pt' --epoch 40
  15. python train.py --model 'badnet' --input_size 32 --prune True --prune_weight './checkpoints/badnet/watermarking/best.pt' --prune_save './checkpoints/badnet/watermarking/prune_best.pt' --epoch 40
  16. python train.py --model 'efficientnet' --input_size 32 --prune True --prune_weight './checkpoints/efficientnetv2_s/watermarking/best.pt' --prune_save './checkpoints/efficientnetv2_s/watermarking/prune_best.pt' --epoch 40
  17. # For 用于剪枝模型后边缘部署
  18. # -------------------------------------------------------------------------------------------------------------------- #