train_embed.py 8.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135
  1. # 数据需准备成以下格式
  2. # ├── 数据集路径:data_path
  3. # └── image:存放所有图片
  4. # └── train.txt:训练图片的绝对路径(或相对data_path下路径)和类别号,(image/mask/0.jpg 0 2\n)表示该图片类别为0和2,空类别图片无类别号
  5. # └── val.txt:验证图片的绝对路径(或相对data_path下路径)和类别
  6. # └── class.txt:所有的类别名称
  7. # class.csv内容如下:
  8. # 类别1
  9. # 类别2
  10. # ...
  11. # -------------------------------------------------------------------------------------------------------------------- #
  12. # 分布式数据并行训练:
  13. # python -m torch.distributed.launch --master_port 9999 --nproc_per_node n train.py --distributed True
  14. # master_port为GPU之间的通讯端口,空闲的即可
  15. # n为GPU数量
  16. # -------------------------------------------------------------------------------------------------------------------- #
  17. import os
  18. # import wandb
  19. import torch
  20. import argparse
  21. from block import secret_get
  22. from block.loss_get import loss_get
  23. from block.model_get import model_get
  24. from block.train_with_watermark import train_embed
  25. # -------------------------------------------------------------------------------------------------------------------- #
  26. # 模型加载/创建的优先级为:加载已有模型>创建剪枝模型>创建timm库模型>创建自定义模型
  27. parser = argparse.ArgumentParser(description='|针对分类任务,添加水印机制,包含数据隐私、模型水印|')
  28. parser.add_argument('--wandb', default=False, type=bool, help='|是否使用wandb可视化|')
  29. parser.add_argument('--wandb_project', default='classification', type=str, help='|wandb项目名称|')
  30. parser.add_argument('--wandb_name', default='train', type=str, help='|wandb项目中的训练名称|')
  31. parser.add_argument('--wandb_image_num', default=16, type=int, help='|wandb保存图片的数量|')
  32. # new_added
  33. parser.add_argument('--data_path', default='./dataset', type=str,
  34. help='Root path to datasets')
  35. parser.add_argument('--dataset_name', default='CIFAR-10', type=str, help='Specific dataset name')
  36. parser.add_argument('--input_channels', default=3, type=int)
  37. parser.add_argument('--output_num', default=10, type=int, help='|输出的类别数|')
  38. # 待修改
  39. parser.add_argument('--input_size', default=32, type=int, help='|输入图片大小|')
  40. # 待修改
  41. parser.add_argument('--output_class', default=10, type=int, help='|输出的类别数|')
  42. parser.add_argument('--weight', default='last.pt', type=str, help='|已有模型的位置,没找到模型会创建剪枝/新模型|')
  43. # 剪枝的处理部分
  44. parser.add_argument('--prune', default=False, type=bool, help='|模型剪枝后再训练(部分模型有),需要提供prune_weight|')
  45. parser.add_argument('--prune_weight', default='best.pt', type=str, help='|模型剪枝的参考模型,会创建剪枝模型和训练模型|')
  46. parser.add_argument('--prune_ratio', default=0.5, type=float, help='|模型剪枝时的保留比例|')
  47. parser.add_argument('--prune_save', default='prune_best.pt', type=str, help='|保存最佳模型,每轮还会保存prune_last.pt|')
  48. # 模型选择
  49. parser.add_argument('--model', default='VGG19', type=str, help='|自定义模型选择|')
  50. # 训练控制
  51. parser.add_argument('--epoch', default=20, type=int, help='|训练总轮数(包含之前已训练轮数)|')
  52. parser.add_argument('--batch', default=500, type=int, help='|训练批量大小,分布式时为总批量|')
  53. parser.add_argument('--loss', default='cross', type=str, help='|损失函数|')
  54. parser.add_argument('--warmup_ratio', default=0.01, type=float, help='|预热训练步数占总步数比例,最少5步,基准为0.01|')
  55. parser.add_argument('--lr_start', default=0.01, type=float, help='|初始学习率,adam算法,批量小时要减小,基准为0.001|')
  56. parser.add_argument('--lr_end_ratio', default=0.01, type=float, help='|最终学习率=lr_end_ratio*lr_start,基准为0.01|')
  57. parser.add_argument('--lr_end_epoch', default=100, type=int, help='|最终学习率达到的轮数,每一步都调整,余弦下降法|')
  58. parser.add_argument('--regularization', default='L2', type=str, help='|正则化,有L2、None|')
  59. parser.add_argument('--r_value', default=0.0005, type=float, help='|正则化权重系数,基准为0.0005|')
  60. parser.add_argument('--device', default='cuda', type=str, help='|训练设备|')
  61. parser.add_argument('--latch', default=True, type=bool, help='|模型和数据是否为锁存,True为锁存|')
  62. parser.add_argument('--num_worker', default=0, type=int, help='|CPU处理数据的进程数,0只有一个主进程,一般为0、2、4、8|')
  63. parser.add_argument('--ema', default=True, type=bool, help='|使用平均指数移动(EMA)调整参数|')
  64. parser.add_argument('--amp', default=False, type=bool, help='|混合float16精度训练,CPU时不可用,出现nan可能与GPU有关|')
  65. parser.add_argument('--noise', default=0.5, type=float, help='|训练数据加噪概率|')
  66. parser.add_argument('--class_threshold', default=0.5, type=float, help='|计算指标时,大于阈值判定为图片有该类别|')
  67. parser.add_argument('--distributed', default=False, type=bool, help='|单机多卡分布式训练,分布式训练时batch为总batch|')
  68. parser.add_argument('--local_rank', default=0, type=int, help='|分布式训练使用命令后会自动传入的参数|')
  69. args = parser.parse_args()
  70. args.device_number = max(torch.cuda.device_count(), 1) # 使用的GPU数,可能为CPU
  71. # 创建模型对应的检查点目录
  72. checkpoint_dir = os.path.join('./checkpoints', args.model, 'wm_embed')
  73. os.makedirs(checkpoint_dir, exist_ok=True)
  74. print(f"模型保存路径已创建: {checkpoint_dir}")
  75. args.save_path = os.path.join(checkpoint_dir, 'best.pt') # 保存最佳训练模型
  76. args.save_path_last = os.path.join(checkpoint_dir, 'last.pt') # 保存最后训练模型
  77. args.key_path = os.path.join(checkpoint_dir, 'key.pt') # 保存投影矩阵位置
  78. dir_name = os.path.dirname(args.key_path)
  79. # 为CPU设置随机种子
  80. torch.manual_seed(999)
  81. # 为所有GPU设置随机种子
  82. torch.cuda.manual_seed_all(999)
  83. # 固定每次返回的卷积算法
  84. torch.backends.cudnn.deterministic = True
  85. # cuDNN使用非确定性算法
  86. torch.backends.cudnn.enabled = True
  87. # 训练前cuDNN会先搜寻每个卷积层最适合实现它的卷积算法,加速运行;但对于复杂变化的输入数据,可能会有过长的搜寻时间,对于训练比较快的网络建议设为False
  88. torch.backends.cudnn.benchmark = False
  89. # wandb可视化:https://wandb.ai
  90. # if args.wandb and args.local_rank == 0: # 分布式时只记录一次wandb
  91. # args.wandb_run = wandb.init(project=args.wandb_project, name=args.wandb_name, config=args)
  92. # 混合float16精度训练
  93. if args.amp:
  94. args.amp = torch.cuda.amp.GradScaler()
  95. # 分布式训练
  96. if args.distributed:
  97. torch.distributed.init_process_group(backend='nccl') # 分布式训练初始化
  98. args.device = torch.device("cuda", args.local_rank)
  99. # -------------------------------------------------------------------------------------------------------------------- #
  100. # 判定数据库内信息是否齐全
  101. if args.local_rank == 0:
  102. print(f'| args:{args} |')
  103. assert os.path.exists(f'{args.data_path}/{args.dataset_name}'), '! data_path中缺少:{args.dataset_name} !'
  104. args.train_dir = f'{args.data_path}/{args.dataset_name}/train_cifar10_JPG'
  105. args.test_dir = f'{args.data_path}/{args.dataset_name}/test_cifar10_JPG'
  106. if args.weight and os.path.exists(args.weight): # 优先加载已有模型args.weight继续训练
  107. print(f'| 加载已有模型:{args.weight} |')
  108. elif args.prune:
  109. print(f'| 加载模型+剪枝训练:{args.prune_weight} |')
  110. else: # 创建自定义模型args.model
  111. assert os.path.exists(f'model/{args.model}.py'), f'! 没有自定义模型:{args.model} !'
  112. print(f'| 创建自定义模型:{args.model} |')
  113. # -------------------------------------------------------------------------------------------------------------------- #
  114. if __name__ == '__main__':
  115. # 摘要
  116. print(f'| args:{args} |') if args.local_rank == 0 else None
  117. # 模型
  118. model_dict = model_get(args)
  119. # 损失
  120. loss = loss_get(args)
  121. # 获取密码标签
  122. secret = secret_get.get_secret(512)
  123. # 训练
  124. train_embed(args, model_dict, loss, secret)