|
@@ -0,0 +1,60 @@
|
|
|
+import torch
|
|
|
+import torchvision
|
|
|
+
|
|
|
+import onnx
|
|
|
+
|
|
|
+
|
|
|
+def get_args_parser(add_help=True):
|
|
|
+ import argparse
|
|
|
+
|
|
|
+ parser = argparse.ArgumentParser(description="model weight transport to onnx", add_help=add_help)
|
|
|
+
|
|
|
+ parser.add_argument("--model", default="resnet18", type=str, help="model name")
|
|
|
+ parser.add_argument(
|
|
|
+ "--num_classes", default=10, type=int, help="number of classes"
|
|
|
+ )
|
|
|
+ parser.add_argument(
|
|
|
+ "--input_size", default=224, type=int, help="input size"
|
|
|
+ )
|
|
|
+ parser.add_argument("--weights", default=None, type=str, help="the weights enum name to load")
|
|
|
+ parser.add_argument("--save_path", default=None, type=str, help="onnx file save path")
|
|
|
+ return parser
|
|
|
+
|
|
|
+
|
|
|
+def export_onnx(args):
|
|
|
+ # 加载模型
|
|
|
+ model = torchvision.models.get_model(args.model, weights=None, num_classes=args.num_classes)
|
|
|
+ model.eval() # 切换到评估模式
|
|
|
+
|
|
|
+ # 加载权重
|
|
|
+ checkpoint = torch.load(args.weights, map_location='cpu')
|
|
|
+ model.load_state_dict(checkpoint["model"])
|
|
|
+
|
|
|
+ # 定义一个随机输入张量,尺寸应符合模型输入要求
|
|
|
+ # 通常,ImageNet预训练模型的输入尺寸是 (batch_size, 3, 224, 224)
|
|
|
+ dummy_input = torch.randn(1, 3, args.input_size, args.input_size)
|
|
|
+
|
|
|
+ # 导出模型到 ONNX 格式
|
|
|
+ with torch.no_grad():
|
|
|
+ torch.onnx.export(
|
|
|
+ model,
|
|
|
+ dummy_input,
|
|
|
+ args.save_path,
|
|
|
+ export_params=True,
|
|
|
+ opset_version=11,
|
|
|
+ do_constant_folding=False, # 确保这个参数一定是False,如果不为False,导出的onnx权重与原始权重数值不一致,导致白盒水印提取失败
|
|
|
+ input_names=["input"],
|
|
|
+ output_names=["output"],
|
|
|
+ dynamic_axes={"input": {0: "batch_size"}, "output": {0: "batch_size"}}
|
|
|
+ )
|
|
|
+
|
|
|
+ print("模型成功导出为 ONNX 格式!")
|
|
|
+
|
|
|
+ # Checks
|
|
|
+ model_onnx = onnx.load(args.save_path) # load onnx model
|
|
|
+ onnx.checker.check_model(model_onnx) # check onnx model
|
|
|
+
|
|
|
+
|
|
|
+if __name__ == '__main__':
|
|
|
+ args = get_args_parser().parse_args()
|
|
|
+ export_onnx(args)
|