import copy import datetime import os import time import torch import torch.ao.quantization import torch.utils.data import torchvision import utils from torch import nn from train import evaluate, load_data, train_one_epoch def main(args): if args.output_dir: utils.mkdir(args.output_dir) utils.init_distributed_mode(args) print(args) if args.post_training_quantize and args.distributed: raise RuntimeError("Post training quantization example should not be performed on distributed mode") # Set backend engine to ensure that quantized model runs on the correct kernels if args.qbackend not in torch.backends.quantized.supported_engines: raise RuntimeError("Quantized backend not supported: " + str(args.qbackend)) torch.backends.quantized.engine = args.qbackend device = torch.device(args.device) torch.backends.cudnn.benchmark = True # Data loading code print("Loading data") train_dir = os.path.join(args.data_path, "train") val_dir = os.path.join(args.data_path, "val") dataset, dataset_test, train_sampler, test_sampler = load_data(train_dir, val_dir, args) data_loader = torch.utils.data.DataLoader( dataset, batch_size=args.batch_size, sampler=train_sampler, num_workers=args.workers, pin_memory=True ) data_loader_test = torch.utils.data.DataLoader( dataset_test, batch_size=args.eval_batch_size, sampler=test_sampler, num_workers=args.workers, pin_memory=True ) print("Creating model", args.model) # when training quantized models, we always start from a pre-trained fp32 reference model prefix = "quantized_" model_name = args.model if not model_name.startswith(prefix): model_name = prefix + model_name model = torchvision.models.get_model(model_name, weights=args.weights, quantize=args.test_only) model.to(device) if not (args.test_only or args.post_training_quantize): model.fuse_model(is_qat=True) model.qconfig = torch.ao.quantization.get_default_qat_qconfig(args.qbackend) torch.ao.quantization.prepare_qat(model, inplace=True) if args.distributed and args.sync_bn: model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model) optimizer = torch.optim.SGD( model.parameters(), lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay ) lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=args.lr_step_size, gamma=args.lr_gamma) criterion = nn.CrossEntropyLoss() model_without_ddp = model if args.distributed: model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu]) model_without_ddp = model.module if args.resume: checkpoint = torch.load(args.resume, map_location="cpu", weights_only=True) model_without_ddp.load_state_dict(checkpoint["model"]) optimizer.load_state_dict(checkpoint["optimizer"]) lr_scheduler.load_state_dict(checkpoint["lr_scheduler"]) args.start_epoch = checkpoint["epoch"] + 1 if args.post_training_quantize: # perform calibration on a subset of the training dataset # for that, create a subset of the training dataset ds = torch.utils.data.Subset(dataset, indices=list(range(args.batch_size * args.num_calibration_batches))) data_loader_calibration = torch.utils.data.DataLoader( ds, batch_size=args.batch_size, shuffle=False, num_workers=args.workers, pin_memory=True ) model.eval() model.fuse_model(is_qat=False) model.qconfig = torch.ao.quantization.get_default_qconfig(args.qbackend) torch.ao.quantization.prepare(model, inplace=True) # Calibrate first print("Calibrating") evaluate(model, criterion, data_loader_calibration, device=device, print_freq=1) torch.ao.quantization.convert(model, inplace=True) if args.output_dir: print("Saving quantized model") if utils.is_main_process(): torch.save(model.state_dict(), os.path.join(args.output_dir, "quantized_post_train_model.pth")) print("Evaluating post-training quantized model") evaluate(model, criterion, data_loader_test, device=device) return if args.test_only: evaluate(model, criterion, data_loader_test, device=device) return model.apply(torch.ao.quantization.enable_observer) model.apply(torch.ao.quantization.enable_fake_quant) start_time = time.time() for epoch in range(args.start_epoch, args.epochs): if args.distributed: train_sampler.set_epoch(epoch) print("Starting training for epoch", epoch) train_one_epoch(model, criterion, optimizer, data_loader, device, epoch, args) lr_scheduler.step() with torch.inference_mode(): if epoch >= args.num_observer_update_epochs: print("Disabling observer for subseq epochs, epoch = ", epoch) model.apply(torch.ao.quantization.disable_observer) if epoch >= args.num_batch_norm_update_epochs: print("Freezing BN for subseq epochs, epoch = ", epoch) model.apply(torch.nn.intrinsic.qat.freeze_bn_stats) print("Evaluate QAT model") evaluate(model, criterion, data_loader_test, device=device, log_suffix="QAT") quantized_eval_model = copy.deepcopy(model_without_ddp) quantized_eval_model.eval() quantized_eval_model.to(torch.device("cpu")) torch.ao.quantization.convert(quantized_eval_model, inplace=True) print("Evaluate Quantized model") evaluate(quantized_eval_model, criterion, data_loader_test, device=torch.device("cpu")) model.train() if args.output_dir: checkpoint = { "model": model_without_ddp.state_dict(), "eval_model": quantized_eval_model.state_dict(), "optimizer": optimizer.state_dict(), "lr_scheduler": lr_scheduler.state_dict(), "epoch": epoch, "args": args, } utils.save_on_master(checkpoint, os.path.join(args.output_dir, f"model_{epoch}.pth")) utils.save_on_master(checkpoint, os.path.join(args.output_dir, "checkpoint.pth")) print("Saving models after epoch ", epoch) total_time = time.time() - start_time total_time_str = str(datetime.timedelta(seconds=int(total_time))) print(f"Training time {total_time_str}") def get_args_parser(add_help=True): import argparse parser = argparse.ArgumentParser(description="PyTorch Quantized Classification Training", add_help=add_help) parser.add_argument("--data-path", default="/datasets01/imagenet_full_size/061417/", type=str, help="dataset path") parser.add_argument("--model", default="mobilenet_v2", type=str, help="model name") parser.add_argument("--qbackend", default="qnnpack", type=str, help="Quantized backend: fbgemm or qnnpack") parser.add_argument("--device", default="cuda", type=str, help="device (Use cuda or cpu Default: cuda)") parser.add_argument( "-b", "--batch-size", default=32, type=int, help="images per gpu, the total batch size is $NGPU x batch_size" ) parser.add_argument("--eval-batch-size", default=128, type=int, help="batch size for evaluation") parser.add_argument("--epochs", default=90, type=int, metavar="N", help="number of total epochs to run") parser.add_argument( "--num-observer-update-epochs", default=4, type=int, metavar="N", help="number of total epochs to update observers", ) parser.add_argument( "--num-batch-norm-update-epochs", default=3, type=int, metavar="N", help="number of total epochs to update batch norm stats", ) parser.add_argument( "--num-calibration-batches", default=32, type=int, metavar="N", help="number of batches of training set for \ observer calibration ", ) parser.add_argument( "-j", "--workers", default=16, type=int, metavar="N", help="number of data loading workers (default: 16)" ) parser.add_argument("--lr", default=0.0001, type=float, help="initial learning rate") parser.add_argument("--momentum", default=0.9, type=float, metavar="M", help="momentum") parser.add_argument( "--wd", "--weight-decay", default=1e-4, type=float, metavar="W", help="weight decay (default: 1e-4)", dest="weight_decay", ) parser.add_argument("--lr-step-size", default=30, type=int, help="decrease lr every step-size epochs") parser.add_argument("--lr-gamma", default=0.1, type=float, help="decrease lr by a factor of lr-gamma") parser.add_argument("--print-freq", default=10, type=int, help="print frequency") parser.add_argument("--output-dir", default=".", type=str, help="path to save outputs") parser.add_argument("--resume", default="", type=str, help="path of checkpoint") parser.add_argument("--start-epoch", default=0, type=int, metavar="N", help="start epoch") parser.add_argument( "--cache-dataset", dest="cache_dataset", help="Cache the datasets for quicker initialization. \ It also serializes the transforms", action="store_true", ) parser.add_argument( "--sync-bn", dest="sync_bn", help="Use sync batch norm", action="store_true", ) parser.add_argument( "--test-only", dest="test_only", help="Only test the model", action="store_true", ) parser.add_argument( "--post-training-quantize", dest="post_training_quantize", help="Post training quantize the model", action="store_true", ) # distributed training parameters parser.add_argument("--world-size", default=1, type=int, help="number of distributed processes") parser.add_argument("--dist-url", default="env://", type=str, help="url used to set up distributed training") parser.add_argument( "--interpolation", default="bilinear", type=str, help="the interpolation method (default: bilinear)" ) parser.add_argument( "--val-resize-size", default=256, type=int, help="the resize size used for validation (default: 256)" ) parser.add_argument( "--val-crop-size", default=224, type=int, help="the central crop size used for validation (default: 224)" ) parser.add_argument( "--train-crop-size", default=224, type=int, help="the random crop size used for training (default: 224)" ) parser.add_argument("--clip-grad-norm", default=None, type=float, help="the maximum gradient norm (default None)") parser.add_argument("--weights", default=None, type=str, help="the weights enum name to load") parser.add_argument("--backend", default="PIL", type=str.lower, help="PIL or tensor - case insensitive") parser.add_argument("--use-v2", action="store_true", help="Use V2 transforms") return parser if __name__ == "__main__": args = get_args_parser().parse_args() if args.backend in ("fbgemm", "qnnpack"): raise ValueError( "The --backend parameter has been re-purposed to specify the backend of the transforms (PIL or Tensor) " "instead of the quantized backend. Please use the --qbackend parameter to specify the quantized backend." ) main(args)