1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162 |
- import math
- import torch
- import torch.distributed as dist
- class RASampler(torch.utils.data.Sampler):
- """Sampler that restricts data loading to a subset of the dataset for distributed,
- with repeated augmentation.
- It ensures that different each augmented version of a sample will be visible to a
- different process (GPU).
- Heavily based on 'torch.utils.data.DistributedSampler'.
- This is borrowed from the DeiT Repo:
- https://github.com/facebookresearch/deit/blob/main/samplers.py
- """
- def __init__(self, dataset, num_replicas=None, rank=None, shuffle=True, seed=0, repetitions=3):
- if num_replicas is None:
- if not dist.is_available():
- raise RuntimeError("Requires distributed package to be available!")
- num_replicas = dist.get_world_size()
- if rank is None:
- if not dist.is_available():
- raise RuntimeError("Requires distributed package to be available!")
- rank = dist.get_rank()
- self.dataset = dataset
- self.num_replicas = num_replicas
- self.rank = rank
- self.epoch = 0
- self.num_samples = int(math.ceil(len(self.dataset) * float(repetitions) / self.num_replicas))
- self.total_size = self.num_samples * self.num_replicas
- self.num_selected_samples = int(math.floor(len(self.dataset) // 256 * 256 / self.num_replicas))
- self.shuffle = shuffle
- self.seed = seed
- self.repetitions = repetitions
- def __iter__(self):
- if self.shuffle:
- # Deterministically shuffle based on epoch
- g = torch.Generator()
- g.manual_seed(self.seed + self.epoch)
- indices = torch.randperm(len(self.dataset), generator=g).tolist()
- else:
- indices = list(range(len(self.dataset)))
- # Add extra samples to make it evenly divisible
- indices = [ele for ele in indices for i in range(self.repetitions)]
- indices += indices[: (self.total_size - len(indices))]
- assert len(indices) == self.total_size
- # Subsample
- indices = indices[self.rank : self.total_size : self.num_replicas]
- assert len(indices) == self.num_samples
- return iter(indices[: self.num_selected_samples])
- def __len__(self):
- return self.num_selected_samples
- def set_epoch(self, epoch):
- self.epoch = epoch
|