123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119 |
- import torch
- from torchvision.transforms.functional import InterpolationMode
- def get_module(use_v2):
- # We need a protected import to avoid the V2 warning in case just V1 is used
- if use_v2:
- import torchvision.transforms.v2
- return torchvision.transforms.v2
- else:
- import torchvision.transforms
- return torchvision.transforms
- class ClassificationPresetTrain:
- # Note: this transform assumes that the input to forward() are always PIL
- # images, regardless of the backend parameter. We may change that in the
- # future though, if we change the output type from the dataset.
- def __init__(
- self,
- *,
- crop_size,
- mean=(0.485, 0.456, 0.406),
- std=(0.229, 0.224, 0.225),
- interpolation=InterpolationMode.BILINEAR,
- hflip_prob=0.5,
- auto_augment_policy=None,
- ra_magnitude=9,
- augmix_severity=3,
- random_erase_prob=0.0,
- backend="pil",
- use_v2=False,
- ):
- T = get_module(use_v2)
- transforms = []
- backend = backend.lower()
- if backend == "tensor":
- transforms.append(T.PILToTensor())
- elif backend != "pil":
- raise ValueError(f"backend can be 'tensor' or 'pil', but got {backend}")
- transforms.append(T.RandomResizedCrop(crop_size, interpolation=interpolation, antialias=True))
- if hflip_prob > 0:
- transforms.append(T.RandomHorizontalFlip(hflip_prob))
- if auto_augment_policy is not None:
- if auto_augment_policy == "ra":
- transforms.append(T.RandAugment(interpolation=interpolation, magnitude=ra_magnitude))
- elif auto_augment_policy == "ta_wide":
- transforms.append(T.TrivialAugmentWide(interpolation=interpolation))
- elif auto_augment_policy == "augmix":
- transforms.append(T.AugMix(interpolation=interpolation, severity=augmix_severity))
- else:
- aa_policy = T.AutoAugmentPolicy(auto_augment_policy)
- transforms.append(T.AutoAugment(policy=aa_policy, interpolation=interpolation))
- if backend == "pil":
- transforms.append(T.PILToTensor())
- transforms.extend(
- [
- T.ToDtype(torch.float, scale=True) if use_v2 else T.ConvertImageDtype(torch.float),
- T.Normalize(mean=mean, std=std),
- ]
- )
- if random_erase_prob > 0:
- transforms.append(T.RandomErasing(p=random_erase_prob))
- if use_v2:
- transforms.append(T.ToPureTensor())
- self.transforms = T.Compose(transforms)
- def __call__(self, img):
- return self.transforms(img)
- class ClassificationPresetEval:
- def __init__(
- self,
- *,
- crop_size,
- resize_size=256,
- mean=(0.485, 0.456, 0.406),
- std=(0.229, 0.224, 0.225),
- interpolation=InterpolationMode.BILINEAR,
- backend="pil",
- use_v2=False,
- ):
- T = get_module(use_v2)
- transforms = []
- backend = backend.lower()
- if backend == "tensor":
- transforms.append(T.PILToTensor())
- elif backend != "pil":
- raise ValueError(f"backend can be 'tensor' or 'pil', but got {backend}")
- transforms += [
- T.Resize(resize_size, interpolation=interpolation, antialias=True),
- T.CenterCrop(crop_size),
- ]
- if backend == "pil":
- transforms.append(T.PILToTensor())
- transforms += [
- T.ToDtype(torch.float, scale=True) if use_v2 else T.ConvertImageDtype(torch.float),
- T.Normalize(mean=mean, std=std),
- ]
- if use_v2:
- transforms.append(T.ToPureTensor())
- self.transforms = T.Compose(transforms)
- def __call__(self, img):
- return self.transforms(img)
|