123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464 |
- import copy
- import datetime
- import errno
- import hashlib
- import os
- import time
- from collections import defaultdict, deque, OrderedDict
- from typing import List, Optional, Tuple
- import torch
- import torch.distributed as dist
- class SmoothedValue:
- """Track a series of values and provide access to smoothed values over a
- window or the global series average.
- """
- def __init__(self, window_size=20, fmt=None):
- if fmt is None:
- fmt = "{median:.4f} ({global_avg:.4f})"
- self.deque = deque(maxlen=window_size)
- self.total = 0.0
- self.count = 0
- self.fmt = fmt
- def update(self, value, n=1):
- self.deque.append(value)
- self.count += n
- self.total += value * n
- def synchronize_between_processes(self):
- """
- Warning: does not synchronize the deque!
- """
- t = reduce_across_processes([self.count, self.total])
- t = t.tolist()
- self.count = int(t[0])
- self.total = t[1]
- @property
- def median(self):
- d = torch.tensor(list(self.deque))
- return d.median().item()
- @property
- def avg(self):
- d = torch.tensor(list(self.deque), dtype=torch.float32)
- return d.mean().item()
- @property
- def global_avg(self):
- return self.total / self.count
- @property
- def max(self):
- return max(self.deque)
- @property
- def value(self):
- return self.deque[-1]
- def __str__(self):
- return self.fmt.format(
- median=self.median, avg=self.avg, global_avg=self.global_avg, max=self.max, value=self.value
- )
- class MetricLogger:
- def __init__(self, delimiter="\t"):
- self.meters = defaultdict(SmoothedValue)
- self.delimiter = delimiter
- def update(self, **kwargs):
- for k, v in kwargs.items():
- if isinstance(v, torch.Tensor):
- v = v.item()
- assert isinstance(v, (float, int))
- self.meters[k].update(v)
- def __getattr__(self, attr):
- if attr in self.meters:
- return self.meters[attr]
- if attr in self.__dict__:
- return self.__dict__[attr]
- raise AttributeError(f"'{type(self).__name__}' object has no attribute '{attr}'")
- def __str__(self):
- loss_str = []
- for name, meter in self.meters.items():
- loss_str.append(f"{name}: {str(meter)}")
- return self.delimiter.join(loss_str)
- def synchronize_between_processes(self):
- for meter in self.meters.values():
- meter.synchronize_between_processes()
- def add_meter(self, name, meter):
- self.meters[name] = meter
- def log_every(self, iterable, print_freq, header=None):
- i = 0
- if not header:
- header = ""
- start_time = time.time()
- end = time.time()
- iter_time = SmoothedValue(fmt="{avg:.4f}")
- data_time = SmoothedValue(fmt="{avg:.4f}")
- space_fmt = ":" + str(len(str(len(iterable)))) + "d"
- if torch.cuda.is_available():
- log_msg = self.delimiter.join(
- [
- header,
- "[{0" + space_fmt + "}/{1}]",
- "eta: {eta}",
- "{meters}",
- "time: {time}",
- "data: {data}",
- "max mem: {memory:.0f}",
- ]
- )
- else:
- log_msg = self.delimiter.join(
- [header, "[{0" + space_fmt + "}/{1}]", "eta: {eta}", "{meters}", "time: {time}", "data: {data}"]
- )
- MB = 1024.0 * 1024.0
- for obj in iterable:
- data_time.update(time.time() - end)
- yield obj
- iter_time.update(time.time() - end)
- if i % print_freq == 0:
- eta_seconds = iter_time.global_avg * (len(iterable) - i)
- eta_string = str(datetime.timedelta(seconds=int(eta_seconds)))
- if torch.cuda.is_available():
- print(
- log_msg.format(
- i,
- len(iterable),
- eta=eta_string,
- meters=str(self),
- time=str(iter_time),
- data=str(data_time),
- memory=torch.cuda.max_memory_allocated() / MB,
- )
- )
- else:
- print(
- log_msg.format(
- i, len(iterable), eta=eta_string, meters=str(self), time=str(iter_time), data=str(data_time)
- )
- )
- i += 1
- end = time.time()
- total_time = time.time() - start_time
- total_time_str = str(datetime.timedelta(seconds=int(total_time)))
- print(f"{header} Total time: {total_time_str}")
- class ExponentialMovingAverage(torch.optim.swa_utils.AveragedModel):
- """Maintains moving averages of model parameters using an exponential decay.
- ``ema_avg = decay * avg_model_param + (1 - decay) * model_param``
- `torch.optim.swa_utils.AveragedModel <https://pytorch.org/docs/stable/optim.html#custom-averaging-strategies>`_
- is used to compute the EMA.
- """
- def __init__(self, model, decay, device="cpu"):
- def ema_avg(avg_model_param, model_param, num_averaged):
- return decay * avg_model_param + (1 - decay) * model_param
- super().__init__(model, device, ema_avg, use_buffers=True)
- def accuracy(output, target, topk=(1,)):
- """Computes the accuracy over the k top predictions for the specified values of k"""
- with torch.inference_mode():
- maxk = max(topk)
- batch_size = target.size(0)
- if target.ndim == 2:
- target = target.max(dim=1)[1]
- _, pred = output.topk(maxk, 1, True, True)
- pred = pred.t()
- correct = pred.eq(target[None])
- res = []
- for k in topk:
- correct_k = correct[:k].flatten().sum(dtype=torch.float32)
- res.append(correct_k * (100.0 / batch_size))
- return res
- def mkdir(path):
- try:
- os.makedirs(path)
- except OSError as e:
- if e.errno != errno.EEXIST:
- raise
- def setup_for_distributed(is_master):
- """
- This function disables printing when not in master process
- """
- import builtins as __builtin__
- builtin_print = __builtin__.print
- def print(*args, **kwargs):
- force = kwargs.pop("force", False)
- if is_master or force:
- builtin_print(*args, **kwargs)
- __builtin__.print = print
- def is_dist_avail_and_initialized():
- if not dist.is_available():
- return False
- if not dist.is_initialized():
- return False
- return True
- def get_world_size():
- if not is_dist_avail_and_initialized():
- return 1
- return dist.get_world_size()
- def get_rank():
- if not is_dist_avail_and_initialized():
- return 0
- return dist.get_rank()
- def is_main_process():
- return get_rank() == 0
- def save_on_master(*args, **kwargs):
- if is_main_process():
- torch.save(*args, **kwargs)
- def init_distributed_mode(args):
- if "RANK" in os.environ and "WORLD_SIZE" in os.environ:
- args.rank = int(os.environ["RANK"])
- args.world_size = int(os.environ["WORLD_SIZE"])
- args.gpu = int(os.environ["LOCAL_RANK"])
- elif "SLURM_PROCID" in os.environ:
- args.rank = int(os.environ["SLURM_PROCID"])
- args.gpu = args.rank % torch.cuda.device_count()
- elif hasattr(args, "rank"):
- pass
- else:
- print("Not using distributed mode")
- args.distributed = False
- return
- args.distributed = True
- torch.cuda.set_device(args.gpu)
- args.dist_backend = "nccl"
- print(f"| distributed init (rank {args.rank}): {args.dist_url}", flush=True)
- torch.distributed.init_process_group(
- backend=args.dist_backend, init_method=args.dist_url, world_size=args.world_size, rank=args.rank
- )
- torch.distributed.barrier()
- setup_for_distributed(args.rank == 0)
- def average_checkpoints(inputs):
- """Loads checkpoints from inputs and returns a model with averaged weights. Original implementation taken from:
- https://github.com/pytorch/fairseq/blob/a48f235636557b8d3bc4922a6fa90f3a0fa57955/scripts/average_checkpoints.py#L16
- Args:
- inputs (List[str]): An iterable of string paths of checkpoints to load from.
- Returns:
- A dict of string keys mapping to various values. The 'model' key
- from the returned dict should correspond to an OrderedDict mapping
- string parameter names to torch Tensors.
- """
- params_dict = OrderedDict()
- params_keys = None
- new_state = None
- num_models = len(inputs)
- for fpath in inputs:
- with open(fpath, "rb") as f:
- state = torch.load(
- f, map_location=(lambda s, _: torch.serialization.default_restore_location(s, "cpu")), weights_only=True
- )
- # Copies over the settings from the first checkpoint
- if new_state is None:
- new_state = state
- model_params = state["model"]
- model_params_keys = list(model_params.keys())
- if params_keys is None:
- params_keys = model_params_keys
- elif params_keys != model_params_keys:
- raise KeyError(
- f"For checkpoint {f}, expected list of params: {params_keys}, but found: {model_params_keys}"
- )
- for k in params_keys:
- p = model_params[k]
- if isinstance(p, torch.HalfTensor):
- p = p.float()
- if k not in params_dict:
- params_dict[k] = p.clone()
- # NOTE: clone() is needed in case of p is a shared parameter
- else:
- params_dict[k] += p
- averaged_params = OrderedDict()
- for k, v in params_dict.items():
- averaged_params[k] = v
- if averaged_params[k].is_floating_point():
- averaged_params[k].div_(num_models)
- else:
- averaged_params[k] //= num_models
- new_state["model"] = averaged_params
- return new_state
- def store_model_weights(model, checkpoint_path, checkpoint_key="model", strict=True):
- """
- This method can be used to prepare weights files for new models. It receives as
- input a model architecture and a checkpoint from the training script and produces
- a file with the weights ready for release.
- Examples:
- from torchvision import models as M
- # Classification
- model = M.mobilenet_v3_large(weights=None)
- print(store_model_weights(model, './class.pth'))
- # Quantized Classification
- model = M.quantization.mobilenet_v3_large(weights=None, quantize=False)
- model.fuse_model(is_qat=True)
- model.qconfig = torch.ao.quantization.get_default_qat_qconfig('qnnpack')
- _ = torch.ao.quantization.prepare_qat(model, inplace=True)
- print(store_model_weights(model, './qat.pth'))
- # Object Detection
- model = M.detection.fasterrcnn_mobilenet_v3_large_fpn(weights=None, weights_backbone=None)
- print(store_model_weights(model, './obj.pth'))
- # Segmentation
- model = M.segmentation.deeplabv3_mobilenet_v3_large(weights=None, weights_backbone=None, aux_loss=True)
- print(store_model_weights(model, './segm.pth', strict=False))
- Args:
- model (pytorch.nn.Module): The model on which the weights will be loaded for validation purposes.
- checkpoint_path (str): The path of the checkpoint we will load.
- checkpoint_key (str, optional): The key of the checkpoint where the model weights are stored.
- Default: "model".
- strict (bool): whether to strictly enforce that the keys
- in :attr:`state_dict` match the keys returned by this module's
- :meth:`~torch.nn.Module.state_dict` function. Default: ``True``
- Returns:
- output_path (str): The location where the weights are saved.
- """
- # Store the new model next to the checkpoint_path
- checkpoint_path = os.path.abspath(checkpoint_path)
- output_dir = os.path.dirname(checkpoint_path)
- # Deep copy to avoid side effects on the model object.
- model = copy.deepcopy(model)
- checkpoint = torch.load(checkpoint_path, map_location="cpu", weights_only=True)
- # Load the weights to the model to validate that everything works
- # and remove unnecessary weights (such as auxiliaries, etc.)
- if checkpoint_key == "model_ema":
- del checkpoint[checkpoint_key]["n_averaged"]
- torch.nn.modules.utils.consume_prefix_in_state_dict_if_present(checkpoint[checkpoint_key], "module.")
- model.load_state_dict(checkpoint[checkpoint_key], strict=strict)
- tmp_path = os.path.join(output_dir, str(model.__hash__()))
- torch.save(model.state_dict(), tmp_path)
- sha256_hash = hashlib.sha256()
- with open(tmp_path, "rb") as f:
- # Read and update hash string value in blocks of 4K
- for byte_block in iter(lambda: f.read(4096), b""):
- sha256_hash.update(byte_block)
- hh = sha256_hash.hexdigest()
- output_path = os.path.join(output_dir, "weights-" + str(hh[:8]) + ".pth")
- os.replace(tmp_path, output_path)
- return output_path
- def reduce_across_processes(val):
- if not is_dist_avail_and_initialized():
- # nothing to sync, but we still convert to tensor for consistency with the distributed case.
- return torch.tensor(val)
- t = torch.tensor(val, device="cuda")
- dist.barrier()
- dist.all_reduce(t)
- return t
- def set_weight_decay(
- model: torch.nn.Module,
- weight_decay: float,
- norm_weight_decay: Optional[float] = None,
- norm_classes: Optional[List[type]] = None,
- custom_keys_weight_decay: Optional[List[Tuple[str, float]]] = None,
- ):
- if not norm_classes:
- norm_classes = [
- torch.nn.modules.batchnorm._BatchNorm,
- torch.nn.LayerNorm,
- torch.nn.GroupNorm,
- torch.nn.modules.instancenorm._InstanceNorm,
- torch.nn.LocalResponseNorm,
- ]
- norm_classes = tuple(norm_classes)
- params = {
- "other": [],
- "norm": [],
- }
- params_weight_decay = {
- "other": weight_decay,
- "norm": norm_weight_decay,
- }
- custom_keys = []
- if custom_keys_weight_decay is not None:
- for key, weight_decay in custom_keys_weight_decay:
- params[key] = []
- params_weight_decay[key] = weight_decay
- custom_keys.append(key)
- def _add_params(module, prefix=""):
- for name, p in module.named_parameters(recurse=False):
- if not p.requires_grad:
- continue
- is_custom_key = False
- for key in custom_keys:
- target_name = f"{prefix}.{name}" if prefix != "" and "." in key else name
- if key == target_name:
- params[key].append(p)
- is_custom_key = True
- break
- if not is_custom_key:
- if norm_weight_decay is not None and isinstance(module, norm_classes):
- params["norm"].append(p)
- else:
- params["other"].append(p)
- for child_name, child_module in module.named_children():
- child_prefix = f"{prefix}.{child_name}" if prefix != "" else child_name
- _add_params(child_module, prefix=child_prefix)
- _add_params(model)
- param_groups = []
- for key in params:
- if len(params[key]) > 0:
- param_groups.append({"params": params[key], "weight_decay": params_weight_decay[key]})
- return param_groups
|