import os import tensorflow as tf from keras.callbacks import ModelCheckpoint, CSVLogger from tensorflow.keras.preprocessing.image import ImageDataGenerator from models.VGG16 import create_model def load_data(train_dir, val_dir, img_size=(224, 224), batch_size=32): # 使用 ImageDataGenerator 加载图像并进行预处理 train_datagen = ImageDataGenerator( rescale=1.0 / 255.0, # 归一化 rotation_range=40, width_shift_range=0.2, height_shift_range=0.2, shear_range=0.2, zoom_range=0.2, horizontal_flip=True, fill_mode='nearest' ) val_datagen = ImageDataGenerator(rescale=1.0 / 255.0) train_generator = train_datagen.flow_from_directory( train_dir, target_size=img_size, # VGG16 输入大小 batch_size=batch_size, class_mode='categorical' # 多分类任务 ) val_generator = val_datagen.flow_from_directory( val_dir, target_size=img_size, batch_size=batch_size, class_mode='categorical' ) return train_generator, val_generator def train_model(args, train_generator, val_generator): # Create model model = create_model() # 调整学习率 learning_rate = args.lr if args.lr else 1e-2 # 编译模型 model.compile(optimizer=tf.keras.optimizers.Adam(), loss='categorical_crossentropy', metrics=['accuracy']) # Define CSVLogger to log training history to a CSV file csv_logger = CSVLogger(os.path.join(args.output_dir, 'training_log.csv'), append=True) # Define ModelCheckpoint callback to save weights for each epoch checkpoint_callback = ModelCheckpoint( os.path.join(args.output_dir, 'vgg16_{epoch:03d}.h5'), # Save weights as vgg16_{epoch}.h5 save_weights_only=False, save_freq='epoch', # Save after every epoch verbose=1 ) # 训练模型 history = model.fit( train_generator, steps_per_epoch=train_generator.samples // train_generator.batch_size, epochs=args.epochs, validation_data=val_generator, validation_steps=val_generator.samples // val_generator.batch_size, callbacks=[csv_logger, checkpoint_callback] ) return history def get_args_parser(add_help=True): import argparse parser = argparse.ArgumentParser(description="PyTorch Classification Training", add_help=add_help) parser.add_argument("--data-path", default="dataset/imagenette2-320", type=str, help="dataset path") parser.add_argument("--output-dir", default="checkpoints/alexnet", type=str, help="path to save outputs") parser.add_argument("--device", default="cuda", type=str, help="device (Use cuda or cpu Default: cuda)") parser.add_argument( "-b", "--batch-size", default=2, type=int, help="images per gpu, the total batch size is $NGPU x batch_size" ) parser.add_argument("--epochs", default=90, type=int, metavar="N", help="number of total epochs to run") parser.add_argument("--opt", default="sgd", type=str, help="optimizer") parser.add_argument("--lr", default=0.1, type=float, help="initial learning rate") parser.add_argument("--momentum", default=0.9, type=float, metavar="M", help="momentum") parser.add_argument("--lr-scheduler", default="steplr", type=str, help="the lr scheduler (default: steplr)") parser.add_argument("--lr-warmup-epochs", default=0, type=int, help="the number of epochs to warmup (default: 0)") parser.add_argument( "--lr-warmup-method", default="constant", type=str, help="the warmup method (default: constant)" ) parser.add_argument("--lr-warmup-decay", default=0.01, type=float, help="the decay for lr") parser.add_argument("--lr-step-size", default=30, type=int, help="decrease lr every step-size epochs") parser.add_argument("--lr-gamma", default=0.1, type=float, help="decrease lr by a factor of lr-gamma") parser.add_argument("--lr-min", default=0.0, type=float, help="minimum lr of lr schedule (default: 0.0)") parser.add_argument("--start-epoch", default=0, type=int, metavar="N", help="start epoch") parser.add_argument( "--input-size", default=224, type=int, help="the random crop size used for training (default: 224)" ) return parser if __name__ == "__main__": args = get_args_parser().parse_args() # Set directories for your custom dataset train_dir = os.path.join(args.data_path, "train") val_dir = os.path.join(args.data_path, "val") # Set the directory where you want to save weights os.makedirs(args.output_dir, exist_ok=True) # Load data train_generator, val_generator = load_data(train_dir, val_dir, img_size=(args.input_size, args.input_size), batch_size=args.batch_size) # Start training train_model(args, train_generator, val_generator)