import os import tensorflow as tf from keras.optimizers import Adam, SGD from keras.callbacks import ModelCheckpoint, CSVLogger from models.AlexNet import create_model from tensorflow.keras.preprocessing import image_dataset_from_directory def load_data(train_dir, val_dir, img_size=(224, 224), batch_size=32): # Define data augmentation for the training set train_datagen = tf.keras.Sequential([ tf.keras.layers.RandomFlip('horizontal'), tf.keras.layers.RandomRotation(0.2), tf.keras.layers.RandomZoom(0.2), tf.keras.layers.RandomContrast(0.2), ]) # Load training dataset train_dataset = image_dataset_from_directory( train_dir, image_size=img_size, # Resize images to (224, 224) batch_size=batch_size, label_mode='categorical', # Return integer labels shuffle=True ) # Load validation dataset val_dataset = image_dataset_from_directory( val_dir, image_size=img_size, # Resize images to (224, 224) batch_size=batch_size, label_mode='categorical', # Return integer labels shuffle=False ) # Normalize the datasets (rescale pixel values to [0, 1]) train_dataset = train_dataset.map( lambda x, y: (train_datagen(x) / 255.0, y), ) val_dataset = val_dataset.map( lambda x, y: (x / 255.0, y), ) return train_dataset, val_dataset def train_model(args, train_data, val_data): # Create model model = create_model() # 调整学习率 learning_rate = args.lr if args.lr else 1e-2 # optimizer = SGD(learning_rate=learning_rate, momentum=args.momentum) # Compile model model.compile(optimizer=Adam(learning_rate=0.0001), loss='categorical_crossentropy', metrics=['accuracy']) # Check if a checkpoint exists and determine the initial_epoch latest_checkpoint = tf.train.latest_checkpoint(args.output_dir) if latest_checkpoint: initial_epoch = int(latest_checkpoint.split('_')[-1].split('.')[0]) # Get the last epoch from filename print(f"Resuming training from epoch {initial_epoch}") else: initial_epoch = 0 # Define CSVLogger to log training history to a CSV file csv_logger = CSVLogger(os.path.join(args.output_dir, 'training_log.csv'), append=True) # Define ModelCheckpoint callback to save weights for each epoch checkpoint_callback = ModelCheckpoint( os.path.join(args.output_dir, 'alexnet_{epoch:03d}.h5'), # Save weights as alexnet_{epoch}.h5 save_weights_only=True, save_freq='epoch', # Save after every epoch verbose=1 ) # Train the model history = model.fit( train_data, epochs=args.epochs, validation_data=val_data, initial_epoch=initial_epoch, callbacks=[csv_logger, checkpoint_callback], # Add checkpoint callback ) return history def get_args_parser(add_help=True): import argparse parser = argparse.ArgumentParser(description="PyTorch Classification Training", add_help=add_help) parser.add_argument("--data-path", default="dataset/imagenette2-320", type=str, help="dataset path") parser.add_argument("--output-dir", default="checkpoints/alexnet", type=str, help="path to save outputs") parser.add_argument("--device", default="cuda", type=str, help="device (Use cuda or cpu Default: cuda)") parser.add_argument( "-b", "--batch-size", default=64, type=int, help="images per gpu, the total batch size is $NGPU x batch_size" ) parser.add_argument("--epochs", default=90, type=int, metavar="N", help="number of total epochs to run") parser.add_argument("--opt", default="sgd", type=str, help="optimizer") parser.add_argument("--lr", default=0.1, type=float, help="initial learning rate") parser.add_argument("--momentum", default=0.9, type=float, metavar="M", help="momentum") parser.add_argument("--lr-scheduler", default="steplr", type=str, help="the lr scheduler (default: steplr)") parser.add_argument("--lr-warmup-epochs", default=0, type=int, help="the number of epochs to warmup (default: 0)") parser.add_argument( "--lr-warmup-method", default="constant", type=str, help="the warmup method (default: constant)" ) parser.add_argument("--lr-warmup-decay", default=0.01, type=float, help="the decay for lr") parser.add_argument("--lr-step-size", default=30, type=int, help="decrease lr every step-size epochs") parser.add_argument("--lr-gamma", default=0.1, type=float, help="decrease lr by a factor of lr-gamma") parser.add_argument("--lr-min", default=0.0, type=float, help="minimum lr of lr schedule (default: 0.0)") parser.add_argument("--start-epoch", default=0, type=int, metavar="N", help="start epoch") parser.add_argument( "--input-size", default=224, type=int, help="the random crop size used for training (default: 224)" ) return parser if __name__ == "__main__": args = get_args_parser().parse_args() # Set directories for your custom dataset train_dir = os.path.join(args.data_path, "train") val_dir = os.path.join(args.data_path, "val") # Set the directory where you want to save weights os.makedirs(args.output_dir, exist_ok=True) # Load data train_data, val_data = load_data(train_dir, val_dir, img_size=(args.input_size, args.input_size), batch_size=args.batch_size) # Start training train_model(args, train_data, val_data)