|
@@ -0,0 +1,923 @@
|
|
|
+import glob
|
|
|
+import json
|
|
|
+import math
|
|
|
+import operator
|
|
|
+import os
|
|
|
+import shutil
|
|
|
+import sys
|
|
|
+try:
|
|
|
+ from pycocotools.coco import COCO
|
|
|
+ from pycocotools.cocoeval import COCOeval
|
|
|
+except:
|
|
|
+ pass
|
|
|
+import cv2
|
|
|
+import matplotlib
|
|
|
+matplotlib.use('Agg')
|
|
|
+from matplotlib import pyplot as plt
|
|
|
+import numpy as np
|
|
|
+
|
|
|
+'''
|
|
|
+ 0,0 ------> x (width)
|
|
|
+ |
|
|
|
+ | (Left,Top)
|
|
|
+ | *_________
|
|
|
+ | | |
|
|
|
+ | |
|
|
|
+ y |_________|
|
|
|
+ (height) *
|
|
|
+ (Right,Bottom)
|
|
|
+'''
|
|
|
+
|
|
|
+def log_average_miss_rate(precision, fp_cumsum, num_images):
|
|
|
+ """
|
|
|
+ log-average miss rate:
|
|
|
+ Calculated by averaging miss rates at 9 evenly spaced FPPI points
|
|
|
+ between 10e-2 and 10e0, in log-space.
|
|
|
+
|
|
|
+ output:
|
|
|
+ lamr | log-average miss rate
|
|
|
+ mr | miss rate
|
|
|
+ fppi | false positives per image
|
|
|
+
|
|
|
+ references:
|
|
|
+ [1] Dollar, Piotr, et al. "Pedestrian Detection: An Evaluation of the
|
|
|
+ State of the Art." Pattern Analysis and Machine Intelligence, IEEE
|
|
|
+ Transactions on 34.4 (2012): 743 - 761.
|
|
|
+ """
|
|
|
+
|
|
|
+ if precision.size == 0:
|
|
|
+ lamr = 0
|
|
|
+ mr = 1
|
|
|
+ fppi = 0
|
|
|
+ return lamr, mr, fppi
|
|
|
+
|
|
|
+ fppi = fp_cumsum / float(num_images)
|
|
|
+ mr = (1 - precision)
|
|
|
+
|
|
|
+ fppi_tmp = np.insert(fppi, 0, -1.0)
|
|
|
+ mr_tmp = np.insert(mr, 0, 1.0)
|
|
|
+
|
|
|
+ ref = np.logspace(-2.0, 0.0, num = 9)
|
|
|
+ for i, ref_i in enumerate(ref):
|
|
|
+ j = np.where(fppi_tmp <= ref_i)[-1][-1]
|
|
|
+ ref[i] = mr_tmp[j]
|
|
|
+
|
|
|
+ lamr = math.exp(np.mean(np.log(np.maximum(1e-10, ref))))
|
|
|
+
|
|
|
+ return lamr, mr, fppi
|
|
|
+
|
|
|
+"""
|
|
|
+ throw error and exit
|
|
|
+"""
|
|
|
+def error(msg):
|
|
|
+ print(msg)
|
|
|
+ sys.exit(0)
|
|
|
+
|
|
|
+"""
|
|
|
+ check if the number is a float between 0.0 and 1.0
|
|
|
+"""
|
|
|
+def is_float_between_0_and_1(value):
|
|
|
+ try:
|
|
|
+ val = float(value)
|
|
|
+ if val > 0.0 and val < 1.0:
|
|
|
+ return True
|
|
|
+ else:
|
|
|
+ return False
|
|
|
+ except ValueError:
|
|
|
+ return False
|
|
|
+
|
|
|
+"""
|
|
|
+ Calculate the AP given the recall and precision array
|
|
|
+ 1st) We compute a version of the measured precision/recall curve with
|
|
|
+ precision monotonically decreasing
|
|
|
+ 2nd) We compute the AP as the area under this curve by numerical integration.
|
|
|
+"""
|
|
|
+def voc_ap(rec, prec):
|
|
|
+ """
|
|
|
+ --- Official matlab code VOC2012---
|
|
|
+ mrec=[0 ; rec ; 1];
|
|
|
+ mpre=[0 ; prec ; 0];
|
|
|
+ for i=numel(mpre)-1:-1:1
|
|
|
+ mpre(i)=max(mpre(i),mpre(i+1));
|
|
|
+ end
|
|
|
+ i=find(mrec(2:end)~=mrec(1:end-1))+1;
|
|
|
+ ap=sum((mrec(i)-mrec(i-1)).*mpre(i));
|
|
|
+ """
|
|
|
+ rec.insert(0, 0.0) # insert 0.0 at begining of list
|
|
|
+ rec.append(1.0) # insert 1.0 at end of list
|
|
|
+ mrec = rec[:]
|
|
|
+ prec.insert(0, 0.0) # insert 0.0 at begining of list
|
|
|
+ prec.append(0.0) # insert 0.0 at end of list
|
|
|
+ mpre = prec[:]
|
|
|
+ """
|
|
|
+ This part makes the precision monotonically decreasing
|
|
|
+ (goes from the end to the beginning)
|
|
|
+ matlab: for i=numel(mpre)-1:-1:1
|
|
|
+ mpre(i)=max(mpre(i),mpre(i+1));
|
|
|
+ """
|
|
|
+ for i in range(len(mpre)-2, -1, -1):
|
|
|
+ mpre[i] = max(mpre[i], mpre[i+1])
|
|
|
+ """
|
|
|
+ This part creates a list of indexes where the recall changes
|
|
|
+ matlab: i=find(mrec(2:end)~=mrec(1:end-1))+1;
|
|
|
+ """
|
|
|
+ i_list = []
|
|
|
+ for i in range(1, len(mrec)):
|
|
|
+ if mrec[i] != mrec[i-1]:
|
|
|
+ i_list.append(i) # if it was matlab would be i + 1
|
|
|
+ """
|
|
|
+ The Average Precision (AP) is the area under the curve
|
|
|
+ (numerical integration)
|
|
|
+ matlab: ap=sum((mrec(i)-mrec(i-1)).*mpre(i));
|
|
|
+ """
|
|
|
+ ap = 0.0
|
|
|
+ for i in i_list:
|
|
|
+ ap += ((mrec[i]-mrec[i-1])*mpre[i])
|
|
|
+ return ap, mrec, mpre
|
|
|
+
|
|
|
+
|
|
|
+"""
|
|
|
+ Convert the lines of a file to a list
|
|
|
+"""
|
|
|
+def file_lines_to_list(path):
|
|
|
+ # open txt file lines to a list
|
|
|
+ with open(path) as f:
|
|
|
+ content = f.readlines()
|
|
|
+ # remove whitespace characters like `\n` at the end of each line
|
|
|
+ content = [x.strip() for x in content]
|
|
|
+ return content
|
|
|
+
|
|
|
+"""
|
|
|
+ Draws text in image
|
|
|
+"""
|
|
|
+def draw_text_in_image(img, text, pos, color, line_width):
|
|
|
+ font = cv2.FONT_HERSHEY_PLAIN
|
|
|
+ fontScale = 1
|
|
|
+ lineType = 1
|
|
|
+ bottomLeftCornerOfText = pos
|
|
|
+ cv2.putText(img, text,
|
|
|
+ bottomLeftCornerOfText,
|
|
|
+ font,
|
|
|
+ fontScale,
|
|
|
+ color,
|
|
|
+ lineType)
|
|
|
+ text_width, _ = cv2.getTextSize(text, font, fontScale, lineType)[0]
|
|
|
+ return img, (line_width + text_width)
|
|
|
+
|
|
|
+"""
|
|
|
+ Plot - adjust axes
|
|
|
+"""
|
|
|
+def adjust_axes(r, t, fig, axes):
|
|
|
+ # get text width for re-scaling
|
|
|
+ bb = t.get_window_extent(renderer=r)
|
|
|
+ text_width_inches = bb.width / fig.dpi
|
|
|
+ # get axis width in inches
|
|
|
+ current_fig_width = fig.get_figwidth()
|
|
|
+ new_fig_width = current_fig_width + text_width_inches
|
|
|
+ propotion = new_fig_width / current_fig_width
|
|
|
+ # get axis limit
|
|
|
+ x_lim = axes.get_xlim()
|
|
|
+ axes.set_xlim([x_lim[0], x_lim[1]*propotion])
|
|
|
+
|
|
|
+"""
|
|
|
+ Draw plot using Matplotlib
|
|
|
+"""
|
|
|
+def draw_plot_func(dictionary, n_classes, window_title, plot_title, x_label, output_path, to_show, plot_color, true_p_bar):
|
|
|
+ # sort the dictionary by decreasing value, into a list of tuples
|
|
|
+ sorted_dic_by_value = sorted(dictionary.items(), key=operator.itemgetter(1))
|
|
|
+ # unpacking the list of tuples into two lists
|
|
|
+ sorted_keys, sorted_values = zip(*sorted_dic_by_value)
|
|
|
+ #
|
|
|
+ if true_p_bar != "":
|
|
|
+ """
|
|
|
+ Special case to draw in:
|
|
|
+ - green -> TP: True Positives (object detected and matches ground-truth)
|
|
|
+ - red -> FP: False Positives (object detected but does not match ground-truth)
|
|
|
+ - orange -> FN: False Negatives (object not detected but present in the ground-truth)
|
|
|
+ """
|
|
|
+ fp_sorted = []
|
|
|
+ tp_sorted = []
|
|
|
+ for key in sorted_keys:
|
|
|
+ fp_sorted.append(dictionary[key] - true_p_bar[key])
|
|
|
+ tp_sorted.append(true_p_bar[key])
|
|
|
+ plt.barh(range(n_classes), fp_sorted, align='center', color='crimson', label='False Positive')
|
|
|
+ plt.barh(range(n_classes), tp_sorted, align='center', color='forestgreen', label='True Positive', left=fp_sorted)
|
|
|
+ # add legend
|
|
|
+ plt.legend(loc='lower right')
|
|
|
+ """
|
|
|
+ Write number on side of bar
|
|
|
+ """
|
|
|
+ fig = plt.gcf() # gcf - get current figure
|
|
|
+ axes = plt.gca()
|
|
|
+ r = fig.canvas.get_renderer()
|
|
|
+ for i, val in enumerate(sorted_values):
|
|
|
+ fp_val = fp_sorted[i]
|
|
|
+ tp_val = tp_sorted[i]
|
|
|
+ fp_str_val = " " + str(fp_val)
|
|
|
+ tp_str_val = fp_str_val + " " + str(tp_val)
|
|
|
+ # trick to paint multicolor with offset:
|
|
|
+ # first paint everything and then repaint the first number
|
|
|
+ t = plt.text(val, i, tp_str_val, color='forestgreen', va='center', fontweight='bold')
|
|
|
+ plt.text(val, i, fp_str_val, color='crimson', va='center', fontweight='bold')
|
|
|
+ if i == (len(sorted_values)-1): # largest bar
|
|
|
+ adjust_axes(r, t, fig, axes)
|
|
|
+ else:
|
|
|
+ plt.barh(range(n_classes), sorted_values, color=plot_color)
|
|
|
+ """
|
|
|
+ Write number on side of bar
|
|
|
+ """
|
|
|
+ fig = plt.gcf() # gcf - get current figure
|
|
|
+ axes = plt.gca()
|
|
|
+ r = fig.canvas.get_renderer()
|
|
|
+ for i, val in enumerate(sorted_values):
|
|
|
+ str_val = " " + str(val) # add a space before
|
|
|
+ if val < 1.0:
|
|
|
+ str_val = " {0:.2f}".format(val)
|
|
|
+ t = plt.text(val, i, str_val, color=plot_color, va='center', fontweight='bold')
|
|
|
+ # re-set axes to show number inside the figure
|
|
|
+ if i == (len(sorted_values)-1): # largest bar
|
|
|
+ adjust_axes(r, t, fig, axes)
|
|
|
+ # set window title
|
|
|
+ fig.canvas.manager.set_window_title(window_title)
|
|
|
+ # write classes in y axis
|
|
|
+ tick_font_size = 12
|
|
|
+ plt.yticks(range(n_classes), sorted_keys, fontsize=tick_font_size)
|
|
|
+ """
|
|
|
+ Re-scale height accordingly
|
|
|
+ """
|
|
|
+ init_height = fig.get_figheight()
|
|
|
+ # comput the matrix height in points and inches
|
|
|
+ dpi = fig.dpi
|
|
|
+ height_pt = n_classes * (tick_font_size * 1.4) # 1.4 (some spacing)
|
|
|
+ height_in = height_pt / dpi
|
|
|
+ # compute the required figure height
|
|
|
+ top_margin = 0.15 # in percentage of the figure height
|
|
|
+ bottom_margin = 0.05 # in percentage of the figure height
|
|
|
+ figure_height = height_in / (1 - top_margin - bottom_margin)
|
|
|
+ # set new height
|
|
|
+ if figure_height > init_height:
|
|
|
+ fig.set_figheight(figure_height)
|
|
|
+
|
|
|
+ # set plot title
|
|
|
+ plt.title(plot_title, fontsize=14)
|
|
|
+ # set axis titles
|
|
|
+ # plt.xlabel('classes')
|
|
|
+ plt.xlabel(x_label, fontsize='large')
|
|
|
+ # adjust size of window
|
|
|
+ fig.tight_layout()
|
|
|
+ # save the plot
|
|
|
+ fig.savefig(output_path)
|
|
|
+ # show image
|
|
|
+ if to_show:
|
|
|
+ plt.show()
|
|
|
+ # close the plot
|
|
|
+ plt.close()
|
|
|
+
|
|
|
+def get_map(MINOVERLAP, draw_plot, score_threhold=0.5, path = './map_out'):
|
|
|
+ GT_PATH = os.path.join(path, 'ground-truth')
|
|
|
+ DR_PATH = os.path.join(path, 'detection-results')
|
|
|
+ IMG_PATH = os.path.join(path, 'images-optional')
|
|
|
+ TEMP_FILES_PATH = os.path.join(path, '.temp_files')
|
|
|
+ RESULTS_FILES_PATH = os.path.join(path, 'results')
|
|
|
+
|
|
|
+ show_animation = True
|
|
|
+ if os.path.exists(IMG_PATH):
|
|
|
+ for dirpath, dirnames, files in os.walk(IMG_PATH):
|
|
|
+ if not files:
|
|
|
+ show_animation = False
|
|
|
+ else:
|
|
|
+ show_animation = False
|
|
|
+
|
|
|
+ if not os.path.exists(TEMP_FILES_PATH):
|
|
|
+ os.makedirs(TEMP_FILES_PATH)
|
|
|
+
|
|
|
+ if os.path.exists(RESULTS_FILES_PATH):
|
|
|
+ shutil.rmtree(RESULTS_FILES_PATH)
|
|
|
+ else:
|
|
|
+ os.makedirs(RESULTS_FILES_PATH)
|
|
|
+ if draw_plot:
|
|
|
+ try:
|
|
|
+ matplotlib.use('TkAgg')
|
|
|
+ except:
|
|
|
+ pass
|
|
|
+ os.makedirs(os.path.join(RESULTS_FILES_PATH, "AP"))
|
|
|
+ os.makedirs(os.path.join(RESULTS_FILES_PATH, "F1"))
|
|
|
+ os.makedirs(os.path.join(RESULTS_FILES_PATH, "Recall"))
|
|
|
+ os.makedirs(os.path.join(RESULTS_FILES_PATH, "Precision"))
|
|
|
+ if show_animation:
|
|
|
+ os.makedirs(os.path.join(RESULTS_FILES_PATH, "images", "detections_one_by_one"))
|
|
|
+
|
|
|
+ ground_truth_files_list = glob.glob(GT_PATH + '/*.txt')
|
|
|
+ if len(ground_truth_files_list) == 0:
|
|
|
+ error("Error: No ground-truth files found!")
|
|
|
+ ground_truth_files_list.sort()
|
|
|
+ gt_counter_per_class = {}
|
|
|
+ counter_images_per_class = {}
|
|
|
+
|
|
|
+ for txt_file in ground_truth_files_list:
|
|
|
+ file_id = txt_file.split(".txt", 1)[0]
|
|
|
+ file_id = os.path.basename(os.path.normpath(file_id))
|
|
|
+ temp_path = os.path.join(DR_PATH, (file_id + ".txt"))
|
|
|
+ if not os.path.exists(temp_path):
|
|
|
+ error_msg = "Error. File not found: {}\n".format(temp_path)
|
|
|
+ error(error_msg)
|
|
|
+ lines_list = file_lines_to_list(txt_file)
|
|
|
+ bounding_boxes = []
|
|
|
+ is_difficult = False
|
|
|
+ already_seen_classes = []
|
|
|
+ for line in lines_list:
|
|
|
+ try:
|
|
|
+ if "difficult" in line:
|
|
|
+ class_name, left, top, right, bottom, _difficult = line.split()
|
|
|
+ is_difficult = True
|
|
|
+ else:
|
|
|
+ class_name, left, top, right, bottom = line.split()
|
|
|
+ except:
|
|
|
+ if "difficult" in line:
|
|
|
+ line_split = line.split()
|
|
|
+ _difficult = line_split[-1]
|
|
|
+ bottom = line_split[-2]
|
|
|
+ right = line_split[-3]
|
|
|
+ top = line_split[-4]
|
|
|
+ left = line_split[-5]
|
|
|
+ class_name = ""
|
|
|
+ for name in line_split[:-5]:
|
|
|
+ class_name += name + " "
|
|
|
+ class_name = class_name[:-1]
|
|
|
+ is_difficult = True
|
|
|
+ else:
|
|
|
+ line_split = line.split()
|
|
|
+ bottom = line_split[-1]
|
|
|
+ right = line_split[-2]
|
|
|
+ top = line_split[-3]
|
|
|
+ left = line_split[-4]
|
|
|
+ class_name = ""
|
|
|
+ for name in line_split[:-4]:
|
|
|
+ class_name += name + " "
|
|
|
+ class_name = class_name[:-1]
|
|
|
+
|
|
|
+ bbox = left + " " + top + " " + right + " " + bottom
|
|
|
+ if is_difficult:
|
|
|
+ bounding_boxes.append({"class_name":class_name, "bbox":bbox, "used":False, "difficult":True})
|
|
|
+ is_difficult = False
|
|
|
+ else:
|
|
|
+ bounding_boxes.append({"class_name":class_name, "bbox":bbox, "used":False})
|
|
|
+ if class_name in gt_counter_per_class:
|
|
|
+ gt_counter_per_class[class_name] += 1
|
|
|
+ else:
|
|
|
+ gt_counter_per_class[class_name] = 1
|
|
|
+
|
|
|
+ if class_name not in already_seen_classes:
|
|
|
+ if class_name in counter_images_per_class:
|
|
|
+ counter_images_per_class[class_name] += 1
|
|
|
+ else:
|
|
|
+ counter_images_per_class[class_name] = 1
|
|
|
+ already_seen_classes.append(class_name)
|
|
|
+
|
|
|
+ with open(TEMP_FILES_PATH + "/" + file_id + "_ground_truth.json", 'w') as outfile:
|
|
|
+ json.dump(bounding_boxes, outfile)
|
|
|
+
|
|
|
+ gt_classes = list(gt_counter_per_class.keys())
|
|
|
+ gt_classes = sorted(gt_classes)
|
|
|
+ n_classes = len(gt_classes)
|
|
|
+
|
|
|
+ dr_files_list = glob.glob(DR_PATH + '/*.txt')
|
|
|
+ dr_files_list.sort()
|
|
|
+ for class_index, class_name in enumerate(gt_classes):
|
|
|
+ bounding_boxes = []
|
|
|
+ for txt_file in dr_files_list:
|
|
|
+ file_id = txt_file.split(".txt",1)[0]
|
|
|
+ file_id = os.path.basename(os.path.normpath(file_id))
|
|
|
+ temp_path = os.path.join(GT_PATH, (file_id + ".txt"))
|
|
|
+ if class_index == 0:
|
|
|
+ if not os.path.exists(temp_path):
|
|
|
+ error_msg = "Error. File not found: {}\n".format(temp_path)
|
|
|
+ error(error_msg)
|
|
|
+ lines = file_lines_to_list(txt_file)
|
|
|
+ for line in lines:
|
|
|
+ try:
|
|
|
+ tmp_class_name, confidence, left, top, right, bottom = line.split()
|
|
|
+ except:
|
|
|
+ line_split = line.split()
|
|
|
+ bottom = line_split[-1]
|
|
|
+ right = line_split[-2]
|
|
|
+ top = line_split[-3]
|
|
|
+ left = line_split[-4]
|
|
|
+ confidence = line_split[-5]
|
|
|
+ tmp_class_name = ""
|
|
|
+ for name in line_split[:-5]:
|
|
|
+ tmp_class_name += name + " "
|
|
|
+ tmp_class_name = tmp_class_name[:-1]
|
|
|
+
|
|
|
+ if tmp_class_name == class_name:
|
|
|
+ bbox = left + " " + top + " " + right + " " +bottom
|
|
|
+ bounding_boxes.append({"confidence":confidence, "file_id":file_id, "bbox":bbox})
|
|
|
+
|
|
|
+ bounding_boxes.sort(key=lambda x:float(x['confidence']), reverse=True)
|
|
|
+ with open(TEMP_FILES_PATH + "/" + class_name + "_dr.json", 'w') as outfile:
|
|
|
+ json.dump(bounding_boxes, outfile)
|
|
|
+
|
|
|
+ sum_AP = 0.0
|
|
|
+ ap_dictionary = {}
|
|
|
+ lamr_dictionary = {}
|
|
|
+ with open(RESULTS_FILES_PATH + "/results.txt", 'w') as results_file:
|
|
|
+ results_file.write("# AP and precision/recall per class\n")
|
|
|
+ count_true_positives = {}
|
|
|
+
|
|
|
+ for class_index, class_name in enumerate(gt_classes):
|
|
|
+ count_true_positives[class_name] = 0
|
|
|
+ dr_file = TEMP_FILES_PATH + "/" + class_name + "_dr.json"
|
|
|
+ dr_data = json.load(open(dr_file))
|
|
|
+
|
|
|
+ nd = len(dr_data)
|
|
|
+ tp = [0] * nd
|
|
|
+ fp = [0] * nd
|
|
|
+ score = [0] * nd
|
|
|
+ score_threhold_idx = 0
|
|
|
+ for idx, detection in enumerate(dr_data):
|
|
|
+ file_id = detection["file_id"]
|
|
|
+ score[idx] = float(detection["confidence"])
|
|
|
+ if score[idx] >= score_threhold:
|
|
|
+ score_threhold_idx = idx
|
|
|
+
|
|
|
+ if show_animation:
|
|
|
+ ground_truth_img = glob.glob1(IMG_PATH, file_id + ".*")
|
|
|
+ if len(ground_truth_img) == 0:
|
|
|
+ error("Error. Image not found with id: " + file_id)
|
|
|
+ elif len(ground_truth_img) > 1:
|
|
|
+ error("Error. Multiple image with id: " + file_id)
|
|
|
+ else:
|
|
|
+ img = cv2.imread(IMG_PATH + "/" + ground_truth_img[0])
|
|
|
+ img_cumulative_path = RESULTS_FILES_PATH + "/images/" + ground_truth_img[0]
|
|
|
+ if os.path.isfile(img_cumulative_path):
|
|
|
+ img_cumulative = cv2.imread(img_cumulative_path)
|
|
|
+ else:
|
|
|
+ img_cumulative = img.copy()
|
|
|
+ bottom_border = 60
|
|
|
+ BLACK = [0, 0, 0]
|
|
|
+ img = cv2.copyMakeBorder(img, 0, bottom_border, 0, 0, cv2.BORDER_CONSTANT, value=BLACK)
|
|
|
+
|
|
|
+ gt_file = TEMP_FILES_PATH + "/" + file_id + "_ground_truth.json"
|
|
|
+ ground_truth_data = json.load(open(gt_file))
|
|
|
+ ovmax = -1
|
|
|
+ gt_match = -1
|
|
|
+ bb = [float(x) for x in detection["bbox"].split()]
|
|
|
+ for obj in ground_truth_data:
|
|
|
+ if obj["class_name"] == class_name:
|
|
|
+ bbgt = [ float(x) for x in obj["bbox"].split() ]
|
|
|
+ bi = [max(bb[0],bbgt[0]), max(bb[1],bbgt[1]), min(bb[2],bbgt[2]), min(bb[3],bbgt[3])]
|
|
|
+ iw = bi[2] - bi[0] + 1
|
|
|
+ ih = bi[3] - bi[1] + 1
|
|
|
+ if iw > 0 and ih > 0:
|
|
|
+ ua = (bb[2] - bb[0] + 1) * (bb[3] - bb[1] + 1) + (bbgt[2] - bbgt[0]
|
|
|
+ + 1) * (bbgt[3] - bbgt[1] + 1) - iw * ih
|
|
|
+ ov = iw * ih / ua
|
|
|
+ if ov > ovmax:
|
|
|
+ ovmax = ov
|
|
|
+ gt_match = obj
|
|
|
+
|
|
|
+ if show_animation:
|
|
|
+ status = "NO MATCH FOUND!"
|
|
|
+
|
|
|
+ min_overlap = MINOVERLAP
|
|
|
+ if ovmax >= min_overlap:
|
|
|
+ if "difficult" not in gt_match:
|
|
|
+ if not bool(gt_match["used"]):
|
|
|
+ tp[idx] = 1
|
|
|
+ gt_match["used"] = True
|
|
|
+ count_true_positives[class_name] += 1
|
|
|
+ with open(gt_file, 'w') as f:
|
|
|
+ f.write(json.dumps(ground_truth_data))
|
|
|
+ if show_animation:
|
|
|
+ status = "MATCH!"
|
|
|
+ else:
|
|
|
+ fp[idx] = 1
|
|
|
+ if show_animation:
|
|
|
+ status = "REPEATED MATCH!"
|
|
|
+ else:
|
|
|
+ fp[idx] = 1
|
|
|
+ if ovmax > 0:
|
|
|
+ status = "INSUFFICIENT OVERLAP"
|
|
|
+
|
|
|
+ """
|
|
|
+ Draw image to show animation
|
|
|
+ """
|
|
|
+ if show_animation:
|
|
|
+ height, widht = img.shape[:2]
|
|
|
+ white = (255,255,255)
|
|
|
+ light_blue = (255,200,100)
|
|
|
+ green = (0,255,0)
|
|
|
+ light_red = (30,30,255)
|
|
|
+ margin = 10
|
|
|
+ # 1nd line
|
|
|
+ v_pos = int(height - margin - (bottom_border / 2.0))
|
|
|
+ text = "Image: " + ground_truth_img[0] + " "
|
|
|
+ img, line_width = draw_text_in_image(img, text, (margin, v_pos), white, 0)
|
|
|
+ text = "Class [" + str(class_index) + "/" + str(n_classes) + "]: " + class_name + " "
|
|
|
+ img, line_width = draw_text_in_image(img, text, (margin + line_width, v_pos), light_blue, line_width)
|
|
|
+ if ovmax != -1:
|
|
|
+ color = light_red
|
|
|
+ if status == "INSUFFICIENT OVERLAP":
|
|
|
+ text = "IoU: {0:.2f}% ".format(ovmax*100) + "< {0:.2f}% ".format(min_overlap*100)
|
|
|
+ else:
|
|
|
+ text = "IoU: {0:.2f}% ".format(ovmax*100) + ">= {0:.2f}% ".format(min_overlap*100)
|
|
|
+ color = green
|
|
|
+ img, _ = draw_text_in_image(img, text, (margin + line_width, v_pos), color, line_width)
|
|
|
+ # 2nd line
|
|
|
+ v_pos += int(bottom_border / 2.0)
|
|
|
+ rank_pos = str(idx+1)
|
|
|
+ text = "Detection #rank: " + rank_pos + " confidence: {0:.2f}% ".format(float(detection["confidence"])*100)
|
|
|
+ img, line_width = draw_text_in_image(img, text, (margin, v_pos), white, 0)
|
|
|
+ color = light_red
|
|
|
+ if status == "MATCH!":
|
|
|
+ color = green
|
|
|
+ text = "Result: " + status + " "
|
|
|
+ img, line_width = draw_text_in_image(img, text, (margin + line_width, v_pos), color, line_width)
|
|
|
+
|
|
|
+ font = cv2.FONT_HERSHEY_SIMPLEX
|
|
|
+ if ovmax > 0:
|
|
|
+ bbgt = [ int(round(float(x))) for x in gt_match["bbox"].split() ]
|
|
|
+ cv2.rectangle(img,(bbgt[0],bbgt[1]),(bbgt[2],bbgt[3]),light_blue,2)
|
|
|
+ cv2.rectangle(img_cumulative,(bbgt[0],bbgt[1]),(bbgt[2],bbgt[3]),light_blue,2)
|
|
|
+ cv2.putText(img_cumulative, class_name, (bbgt[0],bbgt[1] - 5), font, 0.6, light_blue, 1, cv2.LINE_AA)
|
|
|
+ bb = [int(i) for i in bb]
|
|
|
+ cv2.rectangle(img,(bb[0],bb[1]),(bb[2],bb[3]),color,2)
|
|
|
+ cv2.rectangle(img_cumulative,(bb[0],bb[1]),(bb[2],bb[3]),color,2)
|
|
|
+ cv2.putText(img_cumulative, class_name, (bb[0],bb[1] - 5), font, 0.6, color, 1, cv2.LINE_AA)
|
|
|
+
|
|
|
+ cv2.imshow("Animation", img)
|
|
|
+ cv2.waitKey(20)
|
|
|
+ output_img_path = RESULTS_FILES_PATH + "/images/detections_one_by_one/" + class_name + "_detection" + str(idx) + ".jpg"
|
|
|
+ cv2.imwrite(output_img_path, img)
|
|
|
+ cv2.imwrite(img_cumulative_path, img_cumulative)
|
|
|
+
|
|
|
+ cumsum = 0
|
|
|
+ for idx, val in enumerate(fp):
|
|
|
+ fp[idx] += cumsum
|
|
|
+ cumsum += val
|
|
|
+
|
|
|
+ cumsum = 0
|
|
|
+ for idx, val in enumerate(tp):
|
|
|
+ tp[idx] += cumsum
|
|
|
+ cumsum += val
|
|
|
+
|
|
|
+ rec = tp[:]
|
|
|
+ for idx, val in enumerate(tp):
|
|
|
+ rec[idx] = float(tp[idx]) / np.maximum(gt_counter_per_class[class_name], 1)
|
|
|
+
|
|
|
+ prec = tp[:]
|
|
|
+ for idx, val in enumerate(tp):
|
|
|
+ prec[idx] = float(tp[idx]) / np.maximum((fp[idx] + tp[idx]), 1)
|
|
|
+
|
|
|
+ ap, mrec, mprec = voc_ap(rec[:], prec[:])
|
|
|
+ F1 = np.array(rec)*np.array(prec)*2 / np.where((np.array(prec)+np.array(rec))==0, 1, (np.array(prec)+np.array(rec)))
|
|
|
+
|
|
|
+ sum_AP += ap
|
|
|
+ text = "{0:.2f}%".format(ap*100) + " = " + class_name + " AP " #class_name + " AP = {0:.2f}%".format(ap*100)
|
|
|
+
|
|
|
+ if len(prec)>0:
|
|
|
+ F1_text = "{0:.2f}".format(F1[score_threhold_idx]) + " = " + class_name + " F1 "
|
|
|
+ Recall_text = "{0:.2f}%".format(rec[score_threhold_idx]*100) + " = " + class_name + " Recall "
|
|
|
+ Precision_text = "{0:.2f}%".format(prec[score_threhold_idx]*100) + " = " + class_name + " Precision "
|
|
|
+ else:
|
|
|
+ F1_text = "0.00" + " = " + class_name + " F1 "
|
|
|
+ Recall_text = "0.00%" + " = " + class_name + " Recall "
|
|
|
+ Precision_text = "0.00%" + " = " + class_name + " Precision "
|
|
|
+
|
|
|
+ rounded_prec = [ '%.2f' % elem for elem in prec ]
|
|
|
+ rounded_rec = [ '%.2f' % elem for elem in rec ]
|
|
|
+ results_file.write(text + "\n Precision: " + str(rounded_prec) + "\n Recall :" + str(rounded_rec) + "\n\n")
|
|
|
+
|
|
|
+ if len(prec)>0:
|
|
|
+ print(text + "\t||\tscore_threhold=" + str(score_threhold) + " : " + "F1=" + "{0:.2f}".format(F1[score_threhold_idx])\
|
|
|
+ + " ; Recall=" + "{0:.2f}%".format(rec[score_threhold_idx]*100) + " ; Precision=" + "{0:.2f}%".format(prec[score_threhold_idx]*100))
|
|
|
+ else:
|
|
|
+ print(text + "\t||\tscore_threhold=" + str(score_threhold) + " : " + "F1=0.00% ; Recall=0.00% ; Precision=0.00%")
|
|
|
+ ap_dictionary[class_name] = ap
|
|
|
+
|
|
|
+ n_images = counter_images_per_class[class_name]
|
|
|
+ lamr, mr, fppi = log_average_miss_rate(np.array(rec), np.array(fp), n_images)
|
|
|
+ lamr_dictionary[class_name] = lamr
|
|
|
+
|
|
|
+ if draw_plot:
|
|
|
+ plt.plot(rec, prec, '-o')
|
|
|
+ area_under_curve_x = mrec[:-1] + [mrec[-2]] + [mrec[-1]]
|
|
|
+ area_under_curve_y = mprec[:-1] + [0.0] + [mprec[-1]]
|
|
|
+ plt.fill_between(area_under_curve_x, 0, area_under_curve_y, alpha=0.2, edgecolor='r')
|
|
|
+
|
|
|
+ fig = plt.gcf()
|
|
|
+ fig.canvas.manager.set_window_title('AP ' + class_name)
|
|
|
+
|
|
|
+ plt.title('class: ' + text)
|
|
|
+ plt.xlabel('Recall')
|
|
|
+ plt.ylabel('Precision')
|
|
|
+ axes = plt.gca()
|
|
|
+ axes.set_xlim([0.0,1.0])
|
|
|
+ axes.set_ylim([0.0,1.05])
|
|
|
+ fig.savefig(RESULTS_FILES_PATH + "/AP/" + class_name + ".png")
|
|
|
+ plt.cla()
|
|
|
+
|
|
|
+ plt.plot(score, F1, "-", color='orangered')
|
|
|
+ plt.title('class: ' + F1_text + "\nscore_threhold=" + str(score_threhold))
|
|
|
+ plt.xlabel('Score_Threhold')
|
|
|
+ plt.ylabel('F1')
|
|
|
+ axes = plt.gca()
|
|
|
+ axes.set_xlim([0.0,1.0])
|
|
|
+ axes.set_ylim([0.0,1.05])
|
|
|
+ fig.savefig(RESULTS_FILES_PATH + "/F1/" + class_name + ".png")
|
|
|
+ plt.cla()
|
|
|
+
|
|
|
+ plt.plot(score, rec, "-H", color='gold')
|
|
|
+ plt.title('class: ' + Recall_text + "\nscore_threhold=" + str(score_threhold))
|
|
|
+ plt.xlabel('Score_Threhold')
|
|
|
+ plt.ylabel('Recall')
|
|
|
+ axes = plt.gca()
|
|
|
+ axes.set_xlim([0.0,1.0])
|
|
|
+ axes.set_ylim([0.0,1.05])
|
|
|
+ fig.savefig(RESULTS_FILES_PATH + "/Recall/" + class_name + ".png")
|
|
|
+ plt.cla()
|
|
|
+
|
|
|
+ plt.plot(score, prec, "-s", color='palevioletred')
|
|
|
+ plt.title('class: ' + Precision_text + "\nscore_threhold=" + str(score_threhold))
|
|
|
+ plt.xlabel('Score_Threhold')
|
|
|
+ plt.ylabel('Precision')
|
|
|
+ axes = plt.gca()
|
|
|
+ axes.set_xlim([0.0,1.0])
|
|
|
+ axes.set_ylim([0.0,1.05])
|
|
|
+ fig.savefig(RESULTS_FILES_PATH + "/Precision/" + class_name + ".png")
|
|
|
+ plt.cla()
|
|
|
+
|
|
|
+ if show_animation:
|
|
|
+ cv2.destroyAllWindows()
|
|
|
+ if n_classes == 0:
|
|
|
+ print("未检测到任何种类,请检查标签信息与get_map.py中的classes_path是否修改。")
|
|
|
+ return 0
|
|
|
+ results_file.write("\n# mAP of all classes\n")
|
|
|
+ mAP = sum_AP / n_classes
|
|
|
+ text = "mAP = {0:.2f}%".format(mAP*100)
|
|
|
+ results_file.write(text + "\n")
|
|
|
+ print(text)
|
|
|
+
|
|
|
+ shutil.rmtree(TEMP_FILES_PATH)
|
|
|
+
|
|
|
+ """
|
|
|
+ Count total of detection-results
|
|
|
+ """
|
|
|
+ det_counter_per_class = {}
|
|
|
+ for txt_file in dr_files_list:
|
|
|
+ lines_list = file_lines_to_list(txt_file)
|
|
|
+ for line in lines_list:
|
|
|
+ class_name = line.split()[0]
|
|
|
+ if class_name in det_counter_per_class:
|
|
|
+ det_counter_per_class[class_name] += 1
|
|
|
+ else:
|
|
|
+ det_counter_per_class[class_name] = 1
|
|
|
+ dr_classes = list(det_counter_per_class.keys())
|
|
|
+
|
|
|
+ """
|
|
|
+ Write number of ground-truth objects per class to results.txt
|
|
|
+ """
|
|
|
+ with open(RESULTS_FILES_PATH + "/results.txt", 'a') as results_file:
|
|
|
+ results_file.write("\n# Number of ground-truth objects per class\n")
|
|
|
+ for class_name in sorted(gt_counter_per_class):
|
|
|
+ results_file.write(class_name + ": " + str(gt_counter_per_class[class_name]) + "\n")
|
|
|
+
|
|
|
+ """
|
|
|
+ Finish counting true positives
|
|
|
+ """
|
|
|
+ for class_name in dr_classes:
|
|
|
+ if class_name not in gt_classes:
|
|
|
+ count_true_positives[class_name] = 0
|
|
|
+
|
|
|
+ """
|
|
|
+ Write number of detected objects per class to results.txt
|
|
|
+ """
|
|
|
+ with open(RESULTS_FILES_PATH + "/results.txt", 'a') as results_file:
|
|
|
+ results_file.write("\n# Number of detected objects per class\n")
|
|
|
+ for class_name in sorted(dr_classes):
|
|
|
+ n_det = det_counter_per_class[class_name]
|
|
|
+ text = class_name + ": " + str(n_det)
|
|
|
+ text += " (tp:" + str(count_true_positives[class_name]) + ""
|
|
|
+ text += ", fp:" + str(n_det - count_true_positives[class_name]) + ")\n"
|
|
|
+ results_file.write(text)
|
|
|
+
|
|
|
+ """
|
|
|
+ Plot the total number of occurences of each class in the ground-truth
|
|
|
+ """
|
|
|
+ if draw_plot:
|
|
|
+ window_title = "ground-truth-info"
|
|
|
+ plot_title = "ground-truth\n"
|
|
|
+ plot_title += "(" + str(len(ground_truth_files_list)) + " files and " + str(n_classes) + " classes)"
|
|
|
+ x_label = "Number of objects per class"
|
|
|
+ output_path = RESULTS_FILES_PATH + "/ground-truth-info.png"
|
|
|
+ to_show = False
|
|
|
+ plot_color = 'forestgreen'
|
|
|
+ draw_plot_func(
|
|
|
+ gt_counter_per_class,
|
|
|
+ n_classes,
|
|
|
+ window_title,
|
|
|
+ plot_title,
|
|
|
+ x_label,
|
|
|
+ output_path,
|
|
|
+ to_show,
|
|
|
+ plot_color,
|
|
|
+ '',
|
|
|
+ )
|
|
|
+
|
|
|
+ # """
|
|
|
+ # Plot the total number of occurences of each class in the "detection-results" folder
|
|
|
+ # """
|
|
|
+ # if draw_plot:
|
|
|
+ # window_title = "detection-results-info"
|
|
|
+ # # Plot title
|
|
|
+ # plot_title = "detection-results\n"
|
|
|
+ # plot_title += "(" + str(len(dr_files_list)) + " files and "
|
|
|
+ # count_non_zero_values_in_dictionary = sum(int(x) > 0 for x in list(det_counter_per_class.values()))
|
|
|
+ # plot_title += str(count_non_zero_values_in_dictionary) + " detected classes)"
|
|
|
+ # # end Plot title
|
|
|
+ # x_label = "Number of objects per class"
|
|
|
+ # output_path = RESULTS_FILES_PATH + "/detection-results-info.png"
|
|
|
+ # to_show = False
|
|
|
+ # plot_color = 'forestgreen'
|
|
|
+ # true_p_bar = count_true_positives
|
|
|
+ # draw_plot_func(
|
|
|
+ # det_counter_per_class,
|
|
|
+ # len(det_counter_per_class),
|
|
|
+ # window_title,
|
|
|
+ # plot_title,
|
|
|
+ # x_label,
|
|
|
+ # output_path,
|
|
|
+ # to_show,
|
|
|
+ # plot_color,
|
|
|
+ # true_p_bar
|
|
|
+ # )
|
|
|
+
|
|
|
+ """
|
|
|
+ Draw log-average miss rate plot (Show lamr of all classes in decreasing order)
|
|
|
+ """
|
|
|
+ if draw_plot:
|
|
|
+ window_title = "lamr"
|
|
|
+ plot_title = "log-average miss rate"
|
|
|
+ x_label = "log-average miss rate"
|
|
|
+ output_path = RESULTS_FILES_PATH + "/lamr.png"
|
|
|
+ to_show = False
|
|
|
+ plot_color = 'royalblue'
|
|
|
+ draw_plot_func(
|
|
|
+ lamr_dictionary,
|
|
|
+ n_classes,
|
|
|
+ window_title,
|
|
|
+ plot_title,
|
|
|
+ x_label,
|
|
|
+ output_path,
|
|
|
+ to_show,
|
|
|
+ plot_color,
|
|
|
+ ""
|
|
|
+ )
|
|
|
+
|
|
|
+ """
|
|
|
+ Draw mAP plot (Show AP's of all classes in decreasing order)
|
|
|
+ """
|
|
|
+ if draw_plot:
|
|
|
+ window_title = "mAP"
|
|
|
+ plot_title = "mAP = {0:.2f}%".format(mAP*100)
|
|
|
+ x_label = "Average Precision"
|
|
|
+ output_path = RESULTS_FILES_PATH + "/mAP.png"
|
|
|
+ to_show = True
|
|
|
+ plot_color = 'royalblue'
|
|
|
+ draw_plot_func(
|
|
|
+ ap_dictionary,
|
|
|
+ n_classes,
|
|
|
+ window_title,
|
|
|
+ plot_title,
|
|
|
+ x_label,
|
|
|
+ output_path,
|
|
|
+ to_show,
|
|
|
+ plot_color,
|
|
|
+ ""
|
|
|
+ )
|
|
|
+ return mAP
|
|
|
+
|
|
|
+def preprocess_gt(gt_path, class_names):
|
|
|
+ image_ids = os.listdir(gt_path)
|
|
|
+ results = {}
|
|
|
+
|
|
|
+ images = []
|
|
|
+ bboxes = []
|
|
|
+ for i, image_id in enumerate(image_ids):
|
|
|
+ lines_list = file_lines_to_list(os.path.join(gt_path, image_id))
|
|
|
+ boxes_per_image = []
|
|
|
+ image = {}
|
|
|
+ image_id = os.path.splitext(image_id)[0]
|
|
|
+ image['file_name'] = image_id + '.jpg'
|
|
|
+ image['width'] = 1
|
|
|
+ image['height'] = 1
|
|
|
+ #-----------------------------------------------------------------#
|
|
|
+ # 感谢 多学学英语吧 的提醒
|
|
|
+ # 解决了'Results do not correspond to current coco set'问题
|
|
|
+ #-----------------------------------------------------------------#
|
|
|
+ image['id'] = str(image_id)
|
|
|
+
|
|
|
+ for line in lines_list:
|
|
|
+ difficult = 0
|
|
|
+ if "difficult" in line:
|
|
|
+ line_split = line.split()
|
|
|
+ left, top, right, bottom, _difficult = line_split[-5:]
|
|
|
+ class_name = ""
|
|
|
+ for name in line_split[:-5]:
|
|
|
+ class_name += name + " "
|
|
|
+ class_name = class_name[:-1]
|
|
|
+ difficult = 1
|
|
|
+ else:
|
|
|
+ line_split = line.split()
|
|
|
+ left, top, right, bottom = line_split[-4:]
|
|
|
+ class_name = ""
|
|
|
+ for name in line_split[:-4]:
|
|
|
+ class_name += name + " "
|
|
|
+ class_name = class_name[:-1]
|
|
|
+
|
|
|
+ left, top, right, bottom = float(left), float(top), float(right), float(bottom)
|
|
|
+ if class_name not in class_names:
|
|
|
+ continue
|
|
|
+ cls_id = class_names.index(class_name) + 1
|
|
|
+ bbox = [left, top, right - left, bottom - top, difficult, str(image_id), cls_id, (right - left) * (bottom - top) - 10.0]
|
|
|
+ boxes_per_image.append(bbox)
|
|
|
+ images.append(image)
|
|
|
+ bboxes.extend(boxes_per_image)
|
|
|
+ results['images'] = images
|
|
|
+
|
|
|
+ categories = []
|
|
|
+ for i, cls in enumerate(class_names):
|
|
|
+ category = {}
|
|
|
+ category['supercategory'] = cls
|
|
|
+ category['name'] = cls
|
|
|
+ category['id'] = i + 1
|
|
|
+ categories.append(category)
|
|
|
+ results['categories'] = categories
|
|
|
+
|
|
|
+ annotations = []
|
|
|
+ for i, box in enumerate(bboxes):
|
|
|
+ annotation = {}
|
|
|
+ annotation['area'] = box[-1]
|
|
|
+ annotation['category_id'] = box[-2]
|
|
|
+ annotation['image_id'] = box[-3]
|
|
|
+ annotation['iscrowd'] = box[-4]
|
|
|
+ annotation['bbox'] = box[:4]
|
|
|
+ annotation['id'] = i
|
|
|
+ annotations.append(annotation)
|
|
|
+ results['annotations'] = annotations
|
|
|
+ return results
|
|
|
+
|
|
|
+def preprocess_dr(dr_path, class_names):
|
|
|
+ image_ids = os.listdir(dr_path)
|
|
|
+ results = []
|
|
|
+ for image_id in image_ids:
|
|
|
+ lines_list = file_lines_to_list(os.path.join(dr_path, image_id))
|
|
|
+ image_id = os.path.splitext(image_id)[0]
|
|
|
+ for line in lines_list:
|
|
|
+ line_split = line.split()
|
|
|
+ confidence, left, top, right, bottom = line_split[-5:]
|
|
|
+ class_name = ""
|
|
|
+ for name in line_split[:-5]:
|
|
|
+ class_name += name + " "
|
|
|
+ class_name = class_name[:-1]
|
|
|
+ left, top, right, bottom = float(left), float(top), float(right), float(bottom)
|
|
|
+ result = {}
|
|
|
+ result["image_id"] = str(image_id)
|
|
|
+ if class_name not in class_names:
|
|
|
+ continue
|
|
|
+ result["category_id"] = class_names.index(class_name) + 1
|
|
|
+ result["bbox"] = [left, top, right - left, bottom - top]
|
|
|
+ result["score"] = float(confidence)
|
|
|
+ results.append(result)
|
|
|
+ return results
|
|
|
+
|
|
|
+def get_coco_map(class_names, path):
|
|
|
+ GT_PATH = os.path.join(path, 'ground-truth')
|
|
|
+ DR_PATH = os.path.join(path, 'detection-results')
|
|
|
+ COCO_PATH = os.path.join(path, 'coco_eval')
|
|
|
+
|
|
|
+ if not os.path.exists(COCO_PATH):
|
|
|
+ os.makedirs(COCO_PATH)
|
|
|
+
|
|
|
+ GT_JSON_PATH = os.path.join(COCO_PATH, 'instances_gt.json')
|
|
|
+ DR_JSON_PATH = os.path.join(COCO_PATH, 'instances_dr.json')
|
|
|
+
|
|
|
+ with open(GT_JSON_PATH, "w") as f:
|
|
|
+ results_gt = preprocess_gt(GT_PATH, class_names)
|
|
|
+ json.dump(results_gt, f, indent=4)
|
|
|
+
|
|
|
+ with open(DR_JSON_PATH, "w") as f:
|
|
|
+ results_dr = preprocess_dr(DR_PATH, class_names)
|
|
|
+ json.dump(results_dr, f, indent=4)
|
|
|
+ if len(results_dr) == 0:
|
|
|
+ print("未检测到任何目标。")
|
|
|
+ return [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
|
|
|
+
|
|
|
+ cocoGt = COCO(GT_JSON_PATH)
|
|
|
+ cocoDt = cocoGt.loadRes(DR_JSON_PATH)
|
|
|
+ cocoEval = COCOeval(cocoGt, cocoDt, 'bbox')
|
|
|
+ cocoEval.evaluate()
|
|
|
+ cocoEval.accumulate()
|
|
|
+ cocoEval.summarize()
|
|
|
+
|
|
|
+ return cocoEval.stats
|