import os import matplotlib import torch matplotlib.use('Agg') from matplotlib import pyplot as plt import scipy.signal import shutil import numpy as np from PIL import Image from torch.utils.tensorboard import SummaryWriter from tqdm import tqdm from .utils import cvtColor, resize_image, preprocess_input, get_new_img_size from .utils_bbox import DecodeBox from .utils_map import get_coco_map, get_map class LossHistory(): def __init__(self, log_dir, model, input_shape): self.log_dir = log_dir self.losses = [] self.val_loss = [] os.makedirs(self.log_dir) self.writer = SummaryWriter(self.log_dir) # try: # dummy_input = torch.randn(2, 3, input_shape[0], input_shape[1]) # self.writer.add_graph(model, dummy_input) # except: # pass def append_loss(self, epoch, loss, val_loss): if not os.path.exists(self.log_dir): os.makedirs(self.log_dir) self.losses.append(loss) self.val_loss.append(val_loss) with open(os.path.join(self.log_dir, "epoch_loss.txt"), 'a') as f: f.write(str(loss)) f.write("\n") with open(os.path.join(self.log_dir, "epoch_val_loss.txt"), 'a') as f: f.write(str(val_loss)) f.write("\n") self.writer.add_scalar('loss', loss, epoch) self.writer.add_scalar('val_loss', val_loss, epoch) self.loss_plot() def loss_plot(self): iters = range(len(self.losses)) plt.figure() plt.plot(iters, self.losses, 'red', linewidth = 2, label='train loss') plt.plot(iters, self.val_loss, 'coral', linewidth = 2, label='val loss') try: if len(self.losses) < 25: num = 5 else: num = 15 plt.plot(iters, scipy.signal.savgol_filter(self.losses, num, 3), 'green', linestyle = '--', linewidth = 2, label='smooth train loss') plt.plot(iters, scipy.signal.savgol_filter(self.val_loss, num, 3), '#8B4513', linestyle = '--', linewidth = 2, label='smooth val loss') except: pass plt.grid(True) plt.xlabel('Epoch') plt.ylabel('Loss') plt.legend(loc="upper right") plt.savefig(os.path.join(self.log_dir, "epoch_loss.png")) plt.cla() plt.close("all") class EvalCallback(): def __init__(self, net, input_shape, class_names, num_classes, val_lines, log_dir, cuda, \ map_out_path=".temp_map_out", max_boxes=100, confidence=0.05, nms_iou=0.5, letterbox_image=True, MINOVERLAP=0.5, eval_flag=True, period=1): super(EvalCallback, self).__init__() self.net = net self.input_shape = input_shape self.class_names = class_names self.num_classes = num_classes self.val_lines = val_lines self.log_dir = log_dir self.cuda = cuda self.map_out_path = map_out_path self.max_boxes = max_boxes self.confidence = confidence self.nms_iou = nms_iou self.letterbox_image = letterbox_image self.MINOVERLAP = MINOVERLAP self.eval_flag = eval_flag self.period = period self.std = torch.Tensor([0.1, 0.1, 0.2, 0.2]).repeat(self.num_classes + 1)[None] if self.cuda: self.std = self.std.cuda() self.bbox_util = DecodeBox(self.std, self.num_classes) self.maps = [0] self.epoches = [0] if self.eval_flag: with open(os.path.join(self.log_dir, "epoch_map.txt"), 'a') as f: f.write(str(0)) f.write("\n") #---------------------------------------------------# # 检测图片 #---------------------------------------------------# def get_map_txt(self, image_id, image, class_names, map_out_path): f = open(os.path.join(map_out_path, "detection-results/"+image_id+".txt"),"w") #---------------------------------------------------# # 计算输入图片的高和宽 #---------------------------------------------------# image_shape = np.array(np.shape(image)[0:2]) input_shape = get_new_img_size(image_shape[0], image_shape[1]) #---------------------------------------------------------# # 在这里将图像转换成RGB图像,防止灰度图在预测时报错。 # 代码仅仅支持RGB图像的预测,所有其它类型的图像都会转化成RGB #---------------------------------------------------------# image = cvtColor(image) #---------------------------------------------------------# # 给原图像进行resize,resize到短边为600的大小上 #---------------------------------------------------------# image_data = resize_image(image, [input_shape[1], input_shape[0]]) #---------------------------------------------------------# # 添加上batch_size维度 #---------------------------------------------------------# image_data = np.expand_dims(np.transpose(preprocess_input(np.array(image_data, dtype='float32')), (2, 0, 1)), 0) with torch.no_grad(): images = torch.from_numpy(image_data) if self.cuda: images = images.cuda() roi_cls_locs, roi_scores, rois, _ = self.net(images) #-------------------------------------------------------------# # 利用classifier的预测结果对建议框进行解码,获得预测框 #-------------------------------------------------------------# results = self.bbox_util.forward(roi_cls_locs, roi_scores, rois, image_shape, input_shape, nms_iou = self.nms_iou, confidence = self.confidence) #--------------------------------------# # 如果没有检测到物体,则返回原图 #--------------------------------------# if len(results[0]) <= 0: return top_label = np.array(results[0][:, 5], dtype = 'int32') top_conf = results[0][:, 4] top_boxes = results[0][:, :4] top_100 = np.argsort(top_conf)[::-1][:self.max_boxes] top_boxes = top_boxes[top_100] top_conf = top_conf[top_100] top_label = top_label[top_100] for i, c in list(enumerate(top_label)): predicted_class = self.class_names[int(c)] box = top_boxes[i] score = str(top_conf[i]) top, left, bottom, right = box if predicted_class not in class_names: continue f.write("%s %s %s %s %s %s\n" % (predicted_class, score[:6], str(int(left)), str(int(top)), str(int(right)),str(int(bottom)))) f.close() return def on_epoch_end(self, epoch): if epoch % self.period == 0 and self.eval_flag: if not os.path.exists(self.map_out_path): os.makedirs(self.map_out_path) if not os.path.exists(os.path.join(self.map_out_path, "ground-truth")): os.makedirs(os.path.join(self.map_out_path, "ground-truth")) if not os.path.exists(os.path.join(self.map_out_path, "detection-results")): os.makedirs(os.path.join(self.map_out_path, "detection-results")) print("Get map.") for annotation_line in tqdm(self.val_lines): line = annotation_line.split() image_id = os.path.basename(line[0]).split('.')[0] #------------------------------# # 读取图像并转换成RGB图像 #------------------------------# image = Image.open(line[0]) #------------------------------# # 获得预测框 #------------------------------# gt_boxes = np.array([np.array(list(map(int,box.split(',')))) for box in line[1:]]) #------------------------------# # 获得预测txt #------------------------------# self.get_map_txt(image_id, image, self.class_names, self.map_out_path) #------------------------------# # 获得真实框txt #------------------------------# with open(os.path.join(self.map_out_path, "ground-truth/"+image_id+".txt"), "w") as new_f: for box in gt_boxes: left, top, right, bottom, obj = box obj_name = self.class_names[obj] new_f.write("%s %s %s %s %s\n" % (obj_name, left, top, right, bottom)) print("Calculate Map.") try: temp_map = get_coco_map(class_names = self.class_names, path = self.map_out_path)[1] except: temp_map = get_map(self.MINOVERLAP, False, path = self.map_out_path) self.maps.append(temp_map) self.epoches.append(epoch) with open(os.path.join(self.log_dir, "epoch_map.txt"), 'a') as f: f.write(str(temp_map)) f.write("\n") plt.figure() plt.plot(self.epoches, self.maps, 'red', linewidth = 2, label='train map') plt.grid(True) plt.xlabel('Epoch') plt.ylabel('Map %s'%str(self.MINOVERLAP)) plt.title('A Map Curve') plt.legend(loc="upper right") plt.savefig(os.path.join(self.log_dir, "epoch_map.png")) plt.cla() plt.close("all") print("Get map done.") shutil.rmtree(self.map_out_path)