import torch import torch.nn as nn from torch.hub import load_state_dict_from_url #--------------------------------------# # VGG16的结构 #--------------------------------------# class VGG(nn.Module): def __init__(self, features, num_classes=1000, init_weights=True): super(VGG, self).__init__() self.features = features #--------------------------------------# # 平均池化到7x7大小 #--------------------------------------# self.avgpool = nn.AdaptiveAvgPool2d((7, 7)) #--------------------------------------# # 分类部分 #--------------------------------------# self.classifier = nn.Sequential( nn.Linear(512 * 7 * 7, 4096), nn.ReLU(True), nn.Dropout(), nn.Linear(4096, 4096), nn.ReLU(True), nn.Dropout(), nn.Linear(4096, num_classes), ) if init_weights: self._initialize_weights() def forward(self, x): #--------------------------------------# # 特征提取 #--------------------------------------# x = self.features(x) #--------------------------------------# # 平均池化 #--------------------------------------# x = self.avgpool(x) #--------------------------------------# # 平铺后 #--------------------------------------# x = torch.flatten(x, 1) #--------------------------------------# # 分类部分 #--------------------------------------# x = self.classifier(x) return x def _initialize_weights(self): for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode = 'fan_out', nonlinearity = 'relu') if m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) elif isinstance(m, nn.Linear): nn.init.normal_(m.weight, 0, 0.01) nn.init.constant_(m.bias, 0) ''' 假设输入图像为(600, 600, 3),随着cfg的循环,特征层变化如下: 600,600,3 -> 600,600,64 -> 600,600,64 -> 300,300,64 -> 300,300,128 -> 300,300,128 -> 150,150,128 -> 150,150,256 -> 150,150,256 -> 150,150,256 -> 75,75,256 -> 75,75,512 -> 75,75,512 -> 75,75,512 -> 37,37,512 -> 37,37,512 -> 37,37,512 -> 37,37,512 到cfg结束,我们获得了一个37,37,512的特征层 ''' cfg = [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M'] #--------------------------------------# # 特征提取部分 #--------------------------------------# def make_layers(cfg, batch_norm = False): layers = [] in_channels = 3 for v in cfg: if v == 'M': layers += [nn.MaxPool2d(kernel_size = 2, stride = 2)] else: conv2d = nn.Conv2d(in_channels, v, kernel_size = 3, padding = 1) if batch_norm: layers += [conv2d, nn.BatchNorm2d(v), nn.ReLU(inplace = True)] else: layers += [conv2d, nn.ReLU(inplace = True)] in_channels = v return nn.Sequential(*layers) def decom_vgg16(pretrained = False): model = VGG(make_layers(cfg)) if pretrained: state_dict = load_state_dict_from_url("https://download.pytorch.org/models/vgg16-397923af.pth", model_dir = "./model_data") model.load_state_dict(state_dict) #----------------------------------------------------------------------------# # 获取特征提取部分,最终获得一个37,37,1024的特征层 #----------------------------------------------------------------------------# features = list(model.features)[:30] #----------------------------------------------------------------------------# # 获取分类部分,需要除去Dropout部分 #----------------------------------------------------------------------------# classifier = list(model.classifier) del classifier[6] del classifier[5] del classifier[2] features = nn.Sequential(*features) classifier = nn.Sequential(*classifier) return features, classifier