import math from functools import partial import numpy as np import torch import torch.nn as nn from torch.nn import functional as F def bbox_iou(bbox_a, bbox_b): if bbox_a.shape[1] != 4 or bbox_b.shape[1] != 4: print(bbox_a, bbox_b) raise IndexError tl = np.maximum(bbox_a[:, None, :2], bbox_b[:, :2]) br = np.minimum(bbox_a[:, None, 2:], bbox_b[:, 2:]) area_i = np.prod(br - tl, axis=2) * (tl < br).all(axis=2) area_a = np.prod(bbox_a[:, 2:] - bbox_a[:, :2], axis=1) area_b = np.prod(bbox_b[:, 2:] - bbox_b[:, :2], axis=1) return area_i / (area_a[:, None] + area_b - area_i) def bbox2loc(src_bbox, dst_bbox): width = src_bbox[:, 2] - src_bbox[:, 0] height = src_bbox[:, 3] - src_bbox[:, 1] ctr_x = src_bbox[:, 0] + 0.5 * width ctr_y = src_bbox[:, 1] + 0.5 * height base_width = dst_bbox[:, 2] - dst_bbox[:, 0] base_height = dst_bbox[:, 3] - dst_bbox[:, 1] base_ctr_x = dst_bbox[:, 0] + 0.5 * base_width base_ctr_y = dst_bbox[:, 1] + 0.5 * base_height eps = np.finfo(height.dtype).eps width = np.maximum(width, eps) height = np.maximum(height, eps) dx = (base_ctr_x - ctr_x) / width dy = (base_ctr_y - ctr_y) / height dw = np.log(base_width / width) dh = np.log(base_height / height) loc = np.vstack((dx, dy, dw, dh)).transpose() return loc class AnchorTargetCreator(object): def __init__(self, n_sample=256, pos_iou_thresh=0.7, neg_iou_thresh=0.3, pos_ratio=0.5): self.n_sample = n_sample self.pos_iou_thresh = pos_iou_thresh self.neg_iou_thresh = neg_iou_thresh self.pos_ratio = pos_ratio def __call__(self, bbox, anchor): argmax_ious, label = self._create_label(anchor, bbox) if (label > 0).any(): loc = bbox2loc(anchor, bbox[argmax_ious]) return loc, label else: return np.zeros_like(anchor), label def _calc_ious(self, anchor, bbox): #----------------------------------------------# # anchor和bbox的iou # 获得的ious的shape为[num_anchors, num_gt] #----------------------------------------------# ious = bbox_iou(anchor, bbox) if len(bbox)==0: return np.zeros(len(anchor), np.int32), np.zeros(len(anchor)), np.zeros(len(bbox)) #---------------------------------------------------------# # 获得每一个先验框最对应的真实框 [num_anchors, ] #---------------------------------------------------------# argmax_ious = ious.argmax(axis=1) #---------------------------------------------------------# # 找出每一个先验框最对应的真实框的iou [num_anchors, ] #---------------------------------------------------------# max_ious = np.max(ious, axis=1) #---------------------------------------------------------# # 获得每一个真实框最对应的先验框 [num_gt, ] #---------------------------------------------------------# gt_argmax_ious = ious.argmax(axis=0) #---------------------------------------------------------# # 保证每一个真实框都存在对应的先验框 #---------------------------------------------------------# for i in range(len(gt_argmax_ious)): argmax_ious[gt_argmax_ious[i]] = i return argmax_ious, max_ious, gt_argmax_ious def _create_label(self, anchor, bbox): # ------------------------------------------ # # 1是正样本,0是负样本,-1忽略 # 初始化的时候全部设置为-1 # ------------------------------------------ # label = np.empty((len(anchor),), dtype=np.int32) label.fill(-1) # ------------------------------------------------------------------------ # # argmax_ious为每个先验框对应的最大的真实框的序号 [num_anchors, ] # max_ious为每个真实框对应的最大的真实框的iou [num_anchors, ] # gt_argmax_ious为每一个真实框对应的最大的先验框的序号 [num_gt, ] # ------------------------------------------------------------------------ # argmax_ious, max_ious, gt_argmax_ious = self._calc_ious(anchor, bbox) # ----------------------------------------------------- # # 如果小于门限值则设置为负样本 # 如果大于门限值则设置为正样本 # 每个真实框至少对应一个先验框 # ----------------------------------------------------- # label[max_ious < self.neg_iou_thresh] = 0 label[max_ious >= self.pos_iou_thresh] = 1 if len(gt_argmax_ious)>0: label[gt_argmax_ious] = 1 # ----------------------------------------------------- # # 判断正样本数量是否大于128,如果大于则限制在128 # ----------------------------------------------------- # n_pos = int(self.pos_ratio * self.n_sample) pos_index = np.where(label == 1)[0] if len(pos_index) > n_pos: disable_index = np.random.choice(pos_index, size=(len(pos_index) - n_pos), replace=False) label[disable_index] = -1 # ----------------------------------------------------- # # 平衡正负样本,保持总数量为256 # ----------------------------------------------------- # n_neg = self.n_sample - np.sum(label == 1) neg_index = np.where(label == 0)[0] if len(neg_index) > n_neg: disable_index = np.random.choice(neg_index, size=(len(neg_index) - n_neg), replace=False) label[disable_index] = -1 return argmax_ious, label class ProposalTargetCreator(object): def __init__(self, n_sample=128, pos_ratio=0.5, pos_iou_thresh=0.5, neg_iou_thresh_high=0.5, neg_iou_thresh_low=0): self.n_sample = n_sample self.pos_ratio = pos_ratio self.pos_roi_per_image = np.round(self.n_sample * self.pos_ratio) self.pos_iou_thresh = pos_iou_thresh self.neg_iou_thresh_high = neg_iou_thresh_high self.neg_iou_thresh_low = neg_iou_thresh_low def __call__(self, roi, bbox, label, loc_normalize_std=(0.1, 0.1, 0.2, 0.2)): roi = np.concatenate((roi.detach().cpu().numpy(), bbox), axis=0) # ----------------------------------------------------- # # 计算建议框和真实框的重合程度 # ----------------------------------------------------- # iou = bbox_iou(roi, bbox) if len(bbox)==0: gt_assignment = np.zeros(len(roi), np.int32) max_iou = np.zeros(len(roi)) gt_roi_label = np.zeros(len(roi)) else: #---------------------------------------------------------# # 获得每一个建议框最对应的真实框 [num_roi, ] #---------------------------------------------------------# gt_assignment = iou.argmax(axis=1) #---------------------------------------------------------# # 获得每一个建议框最对应的真实框的iou [num_roi, ] #---------------------------------------------------------# max_iou = iou.max(axis=1) #---------------------------------------------------------# # 真实框的标签要+1因为有背景的存在 #---------------------------------------------------------# gt_roi_label = label[gt_assignment] + 1 #----------------------------------------------------------------# # 满足建议框和真实框重合程度大于neg_iou_thresh_high的作为负样本 # 将正样本的数量限制在self.pos_roi_per_image以内 #----------------------------------------------------------------# pos_index = np.where(max_iou >= self.pos_iou_thresh)[0] pos_roi_per_this_image = int(min(self.pos_roi_per_image, pos_index.size)) if pos_index.size > 0: pos_index = np.random.choice(pos_index, size=pos_roi_per_this_image, replace=False) #-----------------------------------------------------------------------------------------------------# # 满足建议框和真实框重合程度小于neg_iou_thresh_high大于neg_iou_thresh_low作为负样本 # 将正样本的数量和负样本的数量的总和固定成self.n_sample #-----------------------------------------------------------------------------------------------------# neg_index = np.where((max_iou < self.neg_iou_thresh_high) & (max_iou >= self.neg_iou_thresh_low))[0] neg_roi_per_this_image = self.n_sample - pos_roi_per_this_image neg_roi_per_this_image = int(min(neg_roi_per_this_image, neg_index.size)) if neg_index.size > 0: neg_index = np.random.choice(neg_index, size=neg_roi_per_this_image, replace=False) #---------------------------------------------------------# # sample_roi [n_sample, ] # gt_roi_loc [n_sample, 4] # gt_roi_label [n_sample, ] #---------------------------------------------------------# keep_index = np.append(pos_index, neg_index) sample_roi = roi[keep_index] if len(bbox)==0: return sample_roi, np.zeros_like(sample_roi), gt_roi_label[keep_index] gt_roi_loc = bbox2loc(sample_roi, bbox[gt_assignment[keep_index]]) gt_roi_loc = (gt_roi_loc / np.array(loc_normalize_std, np.float32)) gt_roi_label = gt_roi_label[keep_index] gt_roi_label[pos_roi_per_this_image:] = 0 return sample_roi, gt_roi_loc, gt_roi_label class FasterRCNNTrainer(nn.Module): def __init__(self, model_train, optimizer): super(FasterRCNNTrainer, self).__init__() self.model_train = model_train self.optimizer = optimizer self.rpn_sigma = 1 self.roi_sigma = 1 self.anchor_target_creator = AnchorTargetCreator() self.proposal_target_creator = ProposalTargetCreator() self.loc_normalize_std = [0.1, 0.1, 0.2, 0.2] def _fast_rcnn_loc_loss(self, pred_loc, gt_loc, gt_label, sigma): pred_loc = pred_loc[gt_label > 0] gt_loc = gt_loc[gt_label > 0] sigma_squared = sigma ** 2 regression_diff = (gt_loc - pred_loc) regression_diff = regression_diff.abs().float() regression_loss = torch.where( regression_diff < (1. / sigma_squared), 0.5 * sigma_squared * regression_diff ** 2, regression_diff - 0.5 / sigma_squared ) regression_loss = regression_loss.sum() num_pos = (gt_label > 0).sum().float() regression_loss /= torch.max(num_pos, torch.ones_like(num_pos)) return regression_loss def forward(self, imgs, bboxes, labels, scale): n = imgs.shape[0] img_size = imgs.shape[2:] #-------------------------------# # 获取公用特征层 #-------------------------------# base_feature = self.model_train(imgs, mode = 'extractor') # -------------------------------------------------- # # 利用rpn网络获得调整参数、得分、建议框、先验框 # -------------------------------------------------- # rpn_locs, rpn_scores, rois, roi_indices, anchor = self.model_train(x = [base_feature, img_size], scale = scale, mode = 'rpn') rpn_loc_loss_all, rpn_cls_loss_all, roi_loc_loss_all, roi_cls_loss_all = 0, 0, 0, 0 sample_rois, sample_indexes, gt_roi_locs, gt_roi_labels = [], [], [], [] for i in range(n): bbox = bboxes[i] label = labels[i] rpn_loc = rpn_locs[i] rpn_score = rpn_scores[i] roi = rois[i] # -------------------------------------------------- # # 利用真实框和先验框获得建议框网络应该有的预测结果 # 给每个先验框都打上标签 # gt_rpn_loc [num_anchors, 4] # gt_rpn_label [num_anchors, ] # -------------------------------------------------- # gt_rpn_loc, gt_rpn_label = self.anchor_target_creator(bbox, anchor[0].cpu().numpy()) gt_rpn_loc = torch.Tensor(gt_rpn_loc).type_as(rpn_locs) gt_rpn_label = torch.Tensor(gt_rpn_label).type_as(rpn_locs).long() # -------------------------------------------------- # # 分别计算建议框网络的回归损失和分类损失 # -------------------------------------------------- # rpn_loc_loss = self._fast_rcnn_loc_loss(rpn_loc, gt_rpn_loc, gt_rpn_label, self.rpn_sigma) rpn_cls_loss = F.cross_entropy(rpn_score, gt_rpn_label, ignore_index=-1) rpn_loc_loss_all += rpn_loc_loss rpn_cls_loss_all += rpn_cls_loss # ------------------------------------------------------ # # 利用真实框和建议框获得classifier网络应该有的预测结果 # 获得三个变量,分别是sample_roi, gt_roi_loc, gt_roi_label # sample_roi [n_sample, ] # gt_roi_loc [n_sample, 4] # gt_roi_label [n_sample, ] # ------------------------------------------------------ # sample_roi, gt_roi_loc, gt_roi_label = self.proposal_target_creator(roi, bbox, label, self.loc_normalize_std) sample_rois.append(torch.Tensor(sample_roi).type_as(rpn_locs)) sample_indexes.append(torch.ones(len(sample_roi)).type_as(rpn_locs) * roi_indices[i][0]) gt_roi_locs.append(torch.Tensor(gt_roi_loc).type_as(rpn_locs)) gt_roi_labels.append(torch.Tensor(gt_roi_label).type_as(rpn_locs).long()) sample_rois = torch.stack(sample_rois, dim=0) sample_indexes = torch.stack(sample_indexes, dim=0) roi_cls_locs, roi_scores = self.model_train([base_feature, sample_rois, sample_indexes, img_size], mode = 'head') for i in range(n): # ------------------------------------------------------ # # 根据建议框的种类,取出对应的回归预测结果 # ------------------------------------------------------ # n_sample = roi_cls_locs.size()[1] roi_cls_loc = roi_cls_locs[i] roi_score = roi_scores[i] gt_roi_loc = gt_roi_locs[i] gt_roi_label = gt_roi_labels[i] roi_cls_loc = roi_cls_loc.view(n_sample, -1, 4) roi_loc = roi_cls_loc[torch.arange(0, n_sample), gt_roi_label] # -------------------------------------------------- # # 分别计算Classifier网络的回归损失和分类损失 # -------------------------------------------------- # roi_loc_loss = self._fast_rcnn_loc_loss(roi_loc, gt_roi_loc, gt_roi_label.data, self.roi_sigma) roi_cls_loss = nn.CrossEntropyLoss()(roi_score, gt_roi_label) roi_loc_loss_all += roi_loc_loss roi_cls_loss_all += roi_cls_loss losses = [rpn_loc_loss_all/n, rpn_cls_loss_all/n, roi_loc_loss_all/n, roi_cls_loss_all/n] losses = losses + [sum(losses)] return losses def train_step(self, encoder, imgs, bboxes, labels, scale, fp16=False, scaler=None): self.optimizer.zero_grad() embed_loss = encoder.get_embeder_loss() if not fp16: losses = self.forward(imgs, bboxes, labels, scale) losses[-1] += embed_loss losses[-1].backward() self.optimizer.step() else: from torch.cuda.amp import autocast with autocast(): losses = self.forward(imgs, bboxes, labels, scale) losses[-1] += embed_loss #----------------------# # 反向传播 #----------------------# scaler.scale(losses[-1]).backward() scaler.step(self.optimizer) scaler.update() return losses, embed_loss def weights_init(net, init_type='normal', init_gain=0.02): def init_func(m): classname = m.__class__.__name__ if hasattr(m, 'weight') and classname.find('Conv') != -1: if init_type == 'normal': torch.nn.init.normal_(m.weight.data, 0.0, init_gain) elif init_type == 'xavier': torch.nn.init.xavier_normal_(m.weight.data, gain=init_gain) elif init_type == 'kaiming': torch.nn.init.kaiming_normal_(m.weight.data, a=0, mode='fan_in') elif init_type == 'orthogonal': torch.nn.init.orthogonal_(m.weight.data, gain=init_gain) else: raise NotImplementedError('initialization method [%s] is not implemented' % init_type) elif classname.find('BatchNorm2d') != -1: torch.nn.init.normal_(m.weight.data, 1.0, 0.02) torch.nn.init.constant_(m.bias.data, 0.0) print('initialize network with %s type' % init_type) net.apply(init_func) def get_lr_scheduler(lr_decay_type, lr, min_lr, total_iters, warmup_iters_ratio = 0.05, warmup_lr_ratio = 0.1, no_aug_iter_ratio = 0.05, step_num = 10): def yolox_warm_cos_lr(lr, min_lr, total_iters, warmup_total_iters, warmup_lr_start, no_aug_iter, iters): if iters <= warmup_total_iters: # lr = (lr - warmup_lr_start) * iters / float(warmup_total_iters) + warmup_lr_start lr = (lr - warmup_lr_start) * pow(iters / float(warmup_total_iters), 2) + warmup_lr_start elif iters >= total_iters - no_aug_iter: lr = min_lr else: lr = min_lr + 0.5 * (lr - min_lr) * ( 1.0 + math.cos(math.pi* (iters - warmup_total_iters) / (total_iters - warmup_total_iters - no_aug_iter)) ) return lr def step_lr(lr, decay_rate, step_size, iters): if step_size < 1: raise ValueError("step_size must above 1.") n = iters // step_size out_lr = lr * decay_rate ** n return out_lr if lr_decay_type == "cos": warmup_total_iters = min(max(warmup_iters_ratio * total_iters, 1), 3) warmup_lr_start = max(warmup_lr_ratio * lr, 1e-6) no_aug_iter = min(max(no_aug_iter_ratio * total_iters, 1), 15) func = partial(yolox_warm_cos_lr ,lr, min_lr, total_iters, warmup_total_iters, warmup_lr_start, no_aug_iter) else: decay_rate = (min_lr / lr) ** (1 / (step_num - 1)) step_size = total_iters / step_num func = partial(step_lr, lr, decay_rate, step_size) return func def set_optimizer_lr(optimizer, lr_scheduler_func, epoch): lr = lr_scheduler_func(epoch) for param_group in optimizer.param_groups: param_group['lr'] = lr