import numpy as np from PIL import Image #---------------------------------------------------------# # 将图像转换成RGB图像,防止灰度图在预测时报错。 # 代码仅仅支持RGB图像的预测,所有其它类型的图像都会转化成RGB #---------------------------------------------------------# def cvtColor(image): if len(np.shape(image)) == 3 and np.shape(image)[2] == 3: return image else: image = image.convert('RGB') return image #---------------------------------------------------# # 对输入图像进行resize #---------------------------------------------------# def resize_image(image, size): w, h = size new_image = image.resize((w, h), Image.BICUBIC) return new_image #---------------------------------------------------# # 获得类 #---------------------------------------------------# def get_classes(classes_path): with open(classes_path, encoding='utf-8') as f: class_names = f.readlines() class_names = [c.strip() for c in class_names] return class_names, len(class_names) #---------------------------------------------------# # 获得学习率 #---------------------------------------------------# def get_lr(optimizer): for param_group in optimizer.param_groups: return param_group['lr'] def preprocess_input(image): image /= 255.0 return image def show_config(**kwargs): print('Configurations:') print('-' * 70) print('|%25s | %40s|' % ('keys', 'values')) print('-' * 70) for key, value in kwargs.items(): print('|%25s | %40s|' % (str(key), str(value))) print('-' * 70) def get_new_img_size(height, width, img_min_side=600): if width <= height: f = float(img_min_side) / width resized_height = int(f * height) resized_width = int(img_min_side) else: f = float(img_min_side) / height resized_width = int(f * width) resized_height = int(img_min_side) return resized_height, resized_width