123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130 |
- import math
- import torch.nn as nn
- from torch.hub import load_state_dict_from_url
- class Bottleneck(nn.Module):
- expansion = 4
- def __init__(self, inplanes, planes, stride=1, downsample=None):
- super(Bottleneck, self).__init__()
- self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, stride=stride, bias=False)
- self.bn1 = nn.BatchNorm2d(planes)
- self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False)
- self.bn2 = nn.BatchNorm2d(planes)
- self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False)
- self.bn3 = nn.BatchNorm2d(planes * 4)
- self.relu = nn.ReLU(inplace=True)
- self.downsample = downsample
- self.stride = stride
- def forward(self, x):
- residual = x
- out = self.conv1(x)
- out = self.bn1(out)
- out = self.relu(out)
- out = self.conv2(out)
- out = self.bn2(out)
- out = self.relu(out)
- out = self.conv3(out)
- out = self.bn3(out)
- if self.downsample is not None:
- residual = self.downsample(x)
- out += residual
- out = self.relu(out)
- return out
- class ResNet(nn.Module):
- def __init__(self, block, layers, num_classes=1000):
- #-----------------------------------#
- # 假设输入进来的图片是600,600,3
- #-----------------------------------#
- self.inplanes = 64
- super(ResNet, self).__init__()
- # 600,600,3 -> 300,300,64
- self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
- self.bn1 = nn.BatchNorm2d(64)
- self.relu = nn.ReLU(inplace=True)
- # 300,300,64 -> 150,150,64
- self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=0, ceil_mode=True)
- # 150,150,64 -> 150,150,256
- self.layer1 = self._make_layer(block, 64, layers[0])
- # 150,150,256 -> 75,75,512
- self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
- # 75,75,512 -> 38,38,1024 到这里可以获得一个38,38,1024的共享特征层
- self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
- # self.layer4被用在classifier模型中
- self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
-
- self.avgpool = nn.AvgPool2d(7)
- self.fc = nn.Linear(512 * block.expansion, num_classes)
- for m in self.modules():
- if isinstance(m, nn.Conv2d):
- n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
- m.weight.data.normal_(0, math.sqrt(2. / n))
- elif isinstance(m, nn.BatchNorm2d):
- m.weight.data.fill_(1)
- m.bias.data.zero_()
- def _make_layer(self, block, planes, blocks, stride=1):
- downsample = None
- #-------------------------------------------------------------------#
- # 当模型需要进行高和宽的压缩的时候,就需要用到残差边的downsample
- #-------------------------------------------------------------------#
- if stride != 1 or self.inplanes != planes * block.expansion:
- downsample = nn.Sequential(
- nn.Conv2d(self.inplanes, planes * block.expansion,kernel_size=1, stride=stride, bias=False),
- nn.BatchNorm2d(planes * block.expansion),
- )
- layers = []
- layers.append(block(self.inplanes, planes, stride, downsample))
- self.inplanes = planes * block.expansion
- for i in range(1, blocks):
- layers.append(block(self.inplanes, planes))
- return nn.Sequential(*layers)
- def forward(self, x):
- x = self.conv1(x)
- x = self.bn1(x)
- x = self.relu(x)
- x = self.maxpool(x)
- x = self.layer1(x)
- x = self.layer2(x)
- x = self.layer3(x)
- x = self.layer4(x)
- x = self.avgpool(x)
- x = x.view(x.size(0), -1)
- x = self.fc(x)
- return x
- def resnet50(pretrained = False):
- model = ResNet(Bottleneck, [3, 4, 6, 3])
- if pretrained:
- state_dict = load_state_dict_from_url("https://download.pytorch.org/models/resnet50-19c8e357.pth", model_dir="./model_data")
- model.load_state_dict(state_dict)
- #----------------------------------------------------------------------------#
- # 获取特征提取部分,从conv1到model.layer3,最终获得一个38,38,1024的特征层
- #----------------------------------------------------------------------------#
- features = list([model.conv1, model.bn1, model.relu, model.maxpool, model.layer1, model.layer2, model.layer3])
- #----------------------------------------------------------------------------#
- # 获取分类部分,从model.layer4到model.avgpool
- #----------------------------------------------------------------------------#
- classifier = list([model.layer4, model.avgpool])
-
- features = nn.Sequential(*features)
- classifier = nn.Sequential(*classifier)
- return features, classifier
|