voc_annotation.py 7.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150
  1. import os
  2. import random
  3. import xml.etree.ElementTree as ET
  4. import numpy as np
  5. from utils.utils import get_classes
  6. #--------------------------------------------------------------------------------------------------------------------------------#
  7. # annotation_mode用于指定该文件运行时计算的内容
  8. # annotation_mode为0代表整个标签处理过程,包括获得VOCdevkit/VOC2007/ImageSets里面的txt以及训练用的2007_train.txt、2007_val.txt
  9. # annotation_mode为1代表获得VOCdevkit/VOC2007/ImageSets里面的txt
  10. # annotation_mode为2代表获得训练用的2007_train.txt、2007_val.txt
  11. #--------------------------------------------------------------------------------------------------------------------------------#
  12. annotation_mode = 2
  13. #-------------------------------------------------------------------#
  14. # 必须要修改,用于生成2007_train.txt、2007_val.txt的目标信息
  15. # 与训练和预测所用的classes_path一致即可
  16. # 如果生成的2007_train.txt里面没有目标信息
  17. # 那么就是因为classes没有设定正确
  18. # 仅在annotation_mode为0和2的时候有效
  19. #-------------------------------------------------------------------#
  20. classes_path = ".//model_data/voc_classes.txt"
  21. #--------------------------------------------------------------------------------------------------------------------------------#
  22. # trainval_percent用于指定(训练集+验证集)与测试集的比例,默认情况下 (训练集+验证集):测试集 = 9:1
  23. # train_percent用于指定(训练集+验证集)中训练集与验证集的比例,默认情况下 训练集:验证集 = 9:1
  24. # 仅在annotation_mode为0和1的时候有效
  25. #--------------------------------------------------------------------------------------------------------------------------------#
  26. trainval_percent = 0.9
  27. train_percent = 0.9
  28. #-------------------------------------------------------#
  29. # 指向VOC数据集所在的文件夹
  30. # 默认指向根目录下的VOC数据集
  31. #-------------------------------------------------------#
  32. VOCdevkit_path = ".//VOCdevkit"
  33. VOCdevkit_sets = [('2007', 'train'), ('2007', 'val')]
  34. classes, _ = get_classes(classes_path)
  35. #-------------------------------------------------------#
  36. # 统计目标数量
  37. #-------------------------------------------------------#
  38. photo_nums = np.zeros(len(VOCdevkit_sets))
  39. nums = np.zeros(len(classes))
  40. def convert_annotation(year, image_id, list_file):
  41. in_file = open(os.path.join(VOCdevkit_path, 'VOC%s/Annotations/%s.xml'%(year, image_id)), encoding='utf-8')
  42. tree=ET.parse(in_file)
  43. root = tree.getroot()
  44. for obj in root.iter('object'):
  45. difficult = 0
  46. if obj.find('difficult')!=None:
  47. difficult = obj.find('difficult').text
  48. cls = obj.find('name').text
  49. if cls not in classes or int(difficult)==1:
  50. continue
  51. cls_id = classes.index(cls)
  52. xmlbox = obj.find('bndbox')
  53. b = (int(float(xmlbox.find('xmin').text)), int(float(xmlbox.find('ymin').text)), int(float(xmlbox.find('xmax').text)), int(float(xmlbox.find('ymax').text)))
  54. list_file.write(" " + ",".join([str(a) for a in b]) + ',' + str(cls_id))
  55. nums[classes.index(cls)] = nums[classes.index(cls)] + 1
  56. if __name__ == "__main__":
  57. random.seed(0)
  58. if annotation_mode == 0 or annotation_mode == 1:
  59. print("Generate txt in ImageSets.")
  60. xmlfilepath = os.path.join(VOCdevkit_path, 'VOC2007/Annotations')
  61. saveBasePath = os.path.join(VOCdevkit_path, 'VOC2007/ImageSets/Main')
  62. temp_xml = os.listdir(xmlfilepath)
  63. total_xml = []
  64. for xml in temp_xml:
  65. if xml.endswith(".xml"):
  66. total_xml.append(xml)
  67. num = len(total_xml)
  68. list = range(num)
  69. tv = int(num*trainval_percent)
  70. tr = int(tv*train_percent)
  71. trainval= random.sample(list,tv)
  72. train = random.sample(trainval,tr)
  73. print("train and val size",tv)
  74. print("train size",tr)
  75. ftrainval = open(os.path.join(saveBasePath,'trainval.txt'), 'w')
  76. ftest = open(os.path.join(saveBasePath,'test.txt'), 'w')
  77. ftrain = open(os.path.join(saveBasePath,'train.txt'), 'w')
  78. fval = open(os.path.join(saveBasePath,'val.txt'), 'w')
  79. for i in list:
  80. name=total_xml[i][:-4]+'\n'
  81. if i in trainval:
  82. ftrainval.write(name)
  83. if i in train:
  84. ftrain.write(name)
  85. else:
  86. fval.write(name)
  87. else:
  88. ftest.write(name)
  89. ftrainval.close()
  90. ftrain.close()
  91. fval.close()
  92. ftest.close()
  93. print("Generate txt in ImageSets done.")
  94. if annotation_mode == 0 or annotation_mode == 2:
  95. print("Generate 2007_train.txt and 2007_val.txt for train.")
  96. type_index = 0
  97. for year, image_set in VOCdevkit_sets:
  98. image_ids = open(os.path.join(VOCdevkit_path, 'VOC%s/ImageSets/Main/%s.txt'%(year, image_set)), encoding='utf-8').read().strip().split()
  99. list_file = open('%s_%s.txt'%(year, image_set), 'w', encoding='utf-8')
  100. for image_id in image_ids:
  101. list_file.write('%s/VOC%s/JPEGImages/%s.jpg'%(os.path.abspath(VOCdevkit_path), year, image_id))
  102. convert_annotation(year, image_id, list_file)
  103. list_file.write('\n')
  104. photo_nums[type_index] = len(image_ids)
  105. type_index += 1
  106. list_file.close()
  107. print("Generate 2007_train.txt and 2007_val.txt for train done.")
  108. def printTable(List1, List2):
  109. for i in range(len(List1[0])):
  110. print("|", end=' ')
  111. for j in range(len(List1)):
  112. print(List1[j][i].rjust(int(List2[j])), end=' ')
  113. print("|", end=' ')
  114. print()
  115. str_nums = [str(int(x)) for x in nums]
  116. tableData = [
  117. classes, str_nums
  118. ]
  119. colWidths = [0]*len(tableData)
  120. len1 = 0
  121. for i in range(len(tableData)):
  122. for j in range(len(tableData[i])):
  123. if len(tableData[i][j]) > colWidths[i]:
  124. colWidths[i] = len(tableData[i][j])
  125. printTable(tableData, colWidths)
  126. if photo_nums[0] <= 500:
  127. print("训练集数量小于500,属于较小的数据量,请注意设置较大的训练世代(Epoch)以满足足够的梯度下降次数(Step)。")
  128. if np.sum(nums) == 0:
  129. print("在数据集中并未获得任何目标,请注意修改classes_path对应自己的数据集,并且保证标签名字正确,否则训练将会没有任何效果!")
  130. print("在数据集中并未获得任何目标,请注意修改classes_path对应自己的数据集,并且保证标签名字正确,否则训练将会没有任何效果!")
  131. print("在数据集中并未获得任何目标,请注意修改classes_path对应自己的数据集,并且保证标签名字正确,否则训练将会没有任何效果!")
  132. print("(重要的事情说三遍)。")