123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165 |
- import cv2
- import numpy as np
- import torch
- from PIL import Image
- from torch.utils.data.dataset import Dataset
- from utils.utils import cvtColor, preprocess_input
- class FRCNNDataset(Dataset):
- def __init__(self, annotation_lines, input_shape = [600, 600], train = True):
- self.annotation_lines = annotation_lines
- self.length = len(annotation_lines)
- self.input_shape = input_shape
- self.train = train
- def __len__(self):
- return self.length
- def __getitem__(self, index):
- index = index % self.length
- #---------------------------------------------------#
- # 训练时进行数据的随机增强
- # 验证时不进行数据的随机增强
- #---------------------------------------------------#
- image, y = self.get_random_data(self.annotation_lines[index], self.input_shape[0:2], random = self.train)
- image = np.transpose(preprocess_input(np.array(image, dtype=np.float32)), (2, 0, 1))
- box_data = np.zeros((len(y), 5))
- if len(y) > 0:
- box_data[:len(y)] = y
- box = box_data[:, :4]
- label = box_data[:, -1]
- return image, box, label
- def rand(self, a=0, b=1):
- return np.random.rand()*(b-a) + a
- def get_random_data(self, annotation_line, input_shape, jitter=.3, hue=.1, sat=0.7, val=0.4, random=True):
- line = annotation_line.split()
- #------------------------------#
- # 读取图像并转换成RGB图像
- #------------------------------#
- image = Image.open(line[0])
- image = cvtColor(image)
- #------------------------------#
- # 获得图像的高宽与目标高宽
- #------------------------------#
- iw, ih = image.size
- h, w = input_shape
- #------------------------------#
- # 获得预测框
- #------------------------------#
- box = np.array([np.array(list(map(int,box.split(',')))) for box in line[1:]])
- if not random:
- scale = min(w/iw, h/ih)
- nw = int(iw*scale)
- nh = int(ih*scale)
- dx = (w-nw)//2
- dy = (h-nh)//2
- #---------------------------------#
- # 将图像多余的部分加上灰条
- #---------------------------------#
- image = image.resize((nw,nh), Image.BICUBIC)
- new_image = Image.new('RGB', (w,h), (128,128,128))
- new_image.paste(image, (dx, dy))
- image_data = np.array(new_image, np.float32)
- #---------------------------------#
- # 对真实框进行调整
- #---------------------------------#
- if len(box)>0:
- np.random.shuffle(box)
- box[:, [0,2]] = box[:, [0,2]]*nw/iw + dx
- box[:, [1,3]] = box[:, [1,3]]*nh/ih + dy
- box[:, 0:2][box[:, 0:2]<0] = 0
- box[:, 2][box[:, 2]>w] = w
- box[:, 3][box[:, 3]>h] = h
- box_w = box[:, 2] - box[:, 0]
- box_h = box[:, 3] - box[:, 1]
- box = box[np.logical_and(box_w>1, box_h>1)] # discard invalid box
- return image_data, box
-
- #------------------------------------------#
- # 对图像进行缩放并且进行长和宽的扭曲
- #------------------------------------------#
- new_ar = iw/ih * self.rand(1-jitter,1+jitter) / self.rand(1-jitter,1+jitter)
- scale = self.rand(.25, 2)
- if new_ar < 1:
- nh = int(scale*h)
- nw = int(nh*new_ar)
- else:
- nw = int(scale*w)
- nh = int(nw/new_ar)
- image = image.resize((nw,nh), Image.BICUBIC)
- #------------------------------------------#
- # 将图像多余的部分加上灰条
- #------------------------------------------#
- dx = int(self.rand(0, w-nw))
- dy = int(self.rand(0, h-nh))
- new_image = Image.new('RGB', (w,h), (128,128,128))
- new_image.paste(image, (dx, dy))
- image = new_image
- #------------------------------------------#
- # 翻转图像
- #------------------------------------------#
- flip = self.rand()<.5
- if flip: image = image.transpose(Image.FLIP_LEFT_RIGHT)
- image_data = np.array(image, np.uint8)
- #---------------------------------#
- # 对图像进行色域变换
- # 计算色域变换的参数
- #---------------------------------#
- r = np.random.uniform(-1, 1, 3) * [hue, sat, val] + 1
- #---------------------------------#
- # 将图像转到HSV上
- #---------------------------------#
- hue, sat, val = cv2.split(cv2.cvtColor(image_data, cv2.COLOR_RGB2HSV))
- dtype = image_data.dtype
- #---------------------------------#
- # 应用变换
- #---------------------------------#
- x = np.arange(0, 256, dtype=r.dtype)
- lut_hue = ((x * r[0]) % 180).astype(dtype)
- lut_sat = np.clip(x * r[1], 0, 255).astype(dtype)
- lut_val = np.clip(x * r[2], 0, 255).astype(dtype)
- image_data = cv2.merge((cv2.LUT(hue, lut_hue), cv2.LUT(sat, lut_sat), cv2.LUT(val, lut_val)))
- image_data = cv2.cvtColor(image_data, cv2.COLOR_HSV2RGB)
- #---------------------------------#
- # 对真实框进行调整
- #---------------------------------#
- if len(box)>0:
- np.random.shuffle(box)
- box[:, [0,2]] = box[:, [0,2]]*nw/iw + dx
- box[:, [1,3]] = box[:, [1,3]]*nh/ih + dy
- if flip: box[:, [0,2]] = w - box[:, [2,0]]
- box[:, 0:2][box[:, 0:2]<0] = 0
- box[:, 2][box[:, 2]>w] = w
- box[:, 3][box[:, 3]>h] = h
- box_w = box[:, 2] - box[:, 0]
- box_h = box[:, 3] - box[:, 1]
- box = box[np.logical_and(box_w>1, box_h>1)]
-
- return image_data, box
- # DataLoader中collate_fn使用
- def frcnn_dataset_collate(batch):
- images = []
- bboxes = []
- labels = []
- for img, box, label in batch:
- images.append(img)
- bboxes.append(box)
- labels.append(label)
- images = torch.from_numpy(np.array(images))
- return images, bboxes, labels
|