123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131 |
- import numpy as np
- import torch
- from torch.nn import functional as F
- from torchvision.ops import nms
- def loc2bbox(src_bbox, loc):
- if src_bbox.size()[0] == 0:
- return torch.zeros((0, 4), dtype=loc.dtype)
- src_width = torch.unsqueeze(src_bbox[:, 2] - src_bbox[:, 0], -1)
- src_height = torch.unsqueeze(src_bbox[:, 3] - src_bbox[:, 1], -1)
- src_ctr_x = torch.unsqueeze(src_bbox[:, 0], -1) + 0.5 * src_width
- src_ctr_y = torch.unsqueeze(src_bbox[:, 1], -1) + 0.5 * src_height
- dx = loc[:, 0::4]
- dy = loc[:, 1::4]
- dw = loc[:, 2::4]
- dh = loc[:, 3::4]
- ctr_x = dx * src_width + src_ctr_x
- ctr_y = dy * src_height + src_ctr_y
- w = torch.exp(dw) * src_width
- h = torch.exp(dh) * src_height
- dst_bbox = torch.zeros_like(loc)
- dst_bbox[:, 0::4] = ctr_x - 0.5 * w
- dst_bbox[:, 1::4] = ctr_y - 0.5 * h
- dst_bbox[:, 2::4] = ctr_x + 0.5 * w
- dst_bbox[:, 3::4] = ctr_y + 0.5 * h
- return dst_bbox
- class DecodeBox():
- def __init__(self, std, num_classes):
- self.std = std
- self.num_classes = num_classes + 1
- def frcnn_correct_boxes(self, box_xy, box_wh, input_shape, image_shape):
- #-----------------------------------------------------------------#
- # 把y轴放前面是因为方便预测框和图像的宽高进行相乘
- #-----------------------------------------------------------------#
- box_yx = box_xy[..., ::-1]
- box_hw = box_wh[..., ::-1]
- input_shape = np.array(input_shape)
- image_shape = np.array(image_shape)
- box_mins = box_yx - (box_hw / 2.)
- box_maxes = box_yx + (box_hw / 2.)
- boxes = np.concatenate([box_mins[..., 0:1], box_mins[..., 1:2], box_maxes[..., 0:1], box_maxes[..., 1:2]], axis=-1)
- boxes *= np.concatenate([image_shape, image_shape], axis=-1)
- return boxes
- def forward(self, roi_cls_locs, roi_scores, rois, image_shape, input_shape, nms_iou = 0.3, confidence = 0.5):
- results = []
- bs = len(roi_cls_locs)
- #--------------------------------#
- # batch_size, num_rois, 4
- #--------------------------------#
- rois = rois.view((bs, -1, 4))
- #----------------------------------------------------------------------------------------------------------------#
- # 对每一张图片进行处理,由于在predict.py的时候,我们只输入一张图片,所以for i in range(len(mbox_loc))只进行一次
- #----------------------------------------------------------------------------------------------------------------#
- for i in range(bs):
- #----------------------------------------------------------#
- # 对回归参数进行reshape
- #----------------------------------------------------------#
- roi_cls_loc = roi_cls_locs[i] * self.std
- #----------------------------------------------------------#
- # 第一维度是建议框的数量,第二维度是每个种类
- # 第三维度是对应种类的调整参数
- #----------------------------------------------------------#
- roi_cls_loc = roi_cls_loc.view([-1, self.num_classes, 4])
- #-------------------------------------------------------------#
- # 利用classifier网络的预测结果对建议框进行调整获得预测框
- # num_rois, 4 -> num_rois, 1, 4 -> num_rois, num_classes, 4
- #-------------------------------------------------------------#
- roi = rois[i].view((-1, 1, 4)).expand_as(roi_cls_loc)
- cls_bbox = loc2bbox(roi.contiguous().view((-1, 4)), roi_cls_loc.contiguous().view((-1, 4)))
- cls_bbox = cls_bbox.view([-1, (self.num_classes), 4])
- #-------------------------------------------------------------#
- # 对预测框进行归一化,调整到0-1之间
- #-------------------------------------------------------------#
- cls_bbox[..., [0, 2]] = (cls_bbox[..., [0, 2]]) / input_shape[1]
- cls_bbox[..., [1, 3]] = (cls_bbox[..., [1, 3]]) / input_shape[0]
- roi_score = roi_scores[i]
- prob = F.softmax(roi_score, dim=-1)
- results.append([])
- for c in range(1, self.num_classes):
- #--------------------------------#
- # 取出属于该类的所有框的置信度
- # 判断是否大于门限
- #--------------------------------#
- c_confs = prob[:, c]
- c_confs_m = c_confs > confidence
- if len(c_confs[c_confs_m]) > 0:
- #-----------------------------------------#
- # 取出得分高于confidence的框
- #-----------------------------------------#
- boxes_to_process = cls_bbox[c_confs_m, c]
- confs_to_process = c_confs[c_confs_m]
- keep = nms(
- boxes_to_process,
- confs_to_process,
- nms_iou
- )
- #-----------------------------------------#
- # 取出在非极大抑制中效果较好的内容
- #-----------------------------------------#
- good_boxes = boxes_to_process[keep]
- confs = confs_to_process[keep][:, None]
- labels = (c - 1) * torch.ones((len(keep), 1)).cuda() if confs.is_cuda else (c - 1) * torch.ones((len(keep), 1))
- #-----------------------------------------#
- # 将label、置信度、框的位置进行堆叠。
- #-----------------------------------------#
- c_pred = torch.cat((good_boxes, confs, labels), dim=1).cpu().numpy()
- # 添加进result里
- results[-1].extend(c_pred)
- if len(results[-1]) > 0:
- results[-1] = np.array(results[-1])
- box_xy, box_wh = (results[-1][:, 0:2] + results[-1][:, 2:4])/2, results[-1][:, 2:4] - results[-1][:, 0:2]
- results[-1][:, :4] = self.frcnn_correct_boxes(box_xy, box_wh, input_shape, image_shape)
- return results
-
|