12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576 |
- import os
- import torch
- from tqdm import tqdm
- from utils.utils import get_lr
- def fit_one_epoch(model, train_util, loss_history, eval_callback, optimizer, epoch, epoch_step, epoch_step_val, gen, gen_val, Epoch, cuda, fp16, scaler, save_period, save_dir):
- total_loss = 0
- rpn_loc_loss = 0
- rpn_cls_loss = 0
- roi_loc_loss = 0
- roi_cls_loss = 0
-
- val_loss = 0
- print('Start Train')
- with tqdm(total=epoch_step,desc=f'Epoch {epoch + 1}/{Epoch}',postfix=dict,mininterval=0.3) as pbar:
- for iteration, batch in enumerate(gen):
- if iteration >= epoch_step:
- break
- images, boxes, labels = batch[0], batch[1], batch[2]
- with torch.no_grad():
- if cuda:
- images = images.cuda()
- rpn_loc, rpn_cls, roi_loc, roi_cls, total = train_util.train_step(images, boxes, labels, 1, fp16, scaler)
- total_loss += total.item()
- rpn_loc_loss += rpn_loc.item()
- rpn_cls_loss += rpn_cls.item()
- roi_loc_loss += roi_loc.item()
- roi_cls_loss += roi_cls.item()
-
- pbar.set_postfix(**{'total_loss' : total_loss / (iteration + 1),
- 'rpn_loc' : rpn_loc_loss / (iteration + 1),
- 'rpn_cls' : rpn_cls_loss / (iteration + 1),
- 'roi_loc' : roi_loc_loss / (iteration + 1),
- 'roi_cls' : roi_cls_loss / (iteration + 1),
- 'lr' : get_lr(optimizer)})
- pbar.update(1)
- print('Finish Train')
- print('Start Validation')
- with tqdm(total=epoch_step_val, desc=f'Epoch {epoch + 1}/{Epoch}',postfix=dict,mininterval=0.3) as pbar:
- for iteration, batch in enumerate(gen_val):
- if iteration >= epoch_step_val:
- break
- images, boxes, labels = batch[0], batch[1], batch[2]
- with torch.no_grad():
- if cuda:
- images = images.cuda()
- train_util.optimizer.zero_grad()
- _, _, _, _, val_total = train_util.forward(images, boxes, labels, 1)
- val_loss += val_total.item()
-
- pbar.set_postfix(**{'val_loss' : val_loss / (iteration + 1)})
- pbar.update(1)
- print('Finish Validation')
- loss_history.append_loss(epoch + 1, total_loss / epoch_step, val_loss / epoch_step_val)
- eval_callback.on_epoch_end(epoch + 1)
- print('Epoch:'+ str(epoch + 1) + '/' + str(Epoch))
- print('Total Loss: %.3f || Val Loss: %.3f ' % (total_loss / epoch_step, val_loss / epoch_step_val))
-
- #-----------------------------------------------#
- # 保存权值
- #-----------------------------------------------#
- if (epoch + 1) % save_period == 0 or epoch + 1 == Epoch:
- torch.save(model.state_dict(), os.path.join(save_dir, 'ep%03d-loss%.3f-val_loss%.3f.pth' % (epoch + 1, total_loss / epoch_step, val_loss / epoch_step_val)))
- if len(loss_history.val_loss) <= 1 or (val_loss / epoch_step_val) <= min(loss_history.val_loss):
- print('Save best model to best_epoch_weights.pth')
- torch.save(model.state_dict(), os.path.join(save_dir, "best_epoch_weights.pth"))
-
- torch.save(model.state_dict(), os.path.join(save_dir, "last_epoch_weights.pth"))
|