123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141 |
- import os
- import numpy as np
- from torch import nn
- import torch
- from tqdm import tqdm
- from utils.utils import get_lr
- def fit_one_epoch(model, train_util, loss_history, eval_callback, optimizer, epoch, epoch_step, epoch_step_val, gen, gen_val, Epoch, cuda, fp16, scaler, save_period, save_dir):
- total_loss = 0
- rpn_loc_loss = 0
- rpn_cls_loss = 0
- roi_loc_loss = 0
- roi_cls_loss = 0
-
- val_loss = 0
- secret_label = "1727420599.EYev/FbGSh138d6qOtcXBtfZ1YWOO+X/v2VOrIHztcd1AlP96OLECl0WjlESK8UynMA9D6rL/vKQfEs3jLy+/Q=="
- conv_layers = []
- for module in model.modules():
- if isinstance(module, nn.Conv2d):
- conv_layers.append(module)
- conv_layers = conv_layers[0:2]
- encoder = ModelEncoder(layers=conv_layers, secret=secret_label, key_path='../keys/key.npy', device='cuda')
- print('Start Train')
- with tqdm(total=epoch_step,desc=f'Epoch {epoch + 1}/{Epoch}',postfix=dict,mininterval=0.3) as pbar:
- for iteration, batch in enumerate(gen):
- if iteration >= epoch_step:
- break
- images, boxes, labels = batch[0], batch[1], batch[2]
- with torch.no_grad():
- if cuda:
- images = images.cuda()
- source_loss, embed_loss = train_util.train_step(encoder, images, boxes, labels, 1, fp16, scaler)
- rpn_loc, rpn_cls, roi_loc, roi_cls, total = source_loss
- total_loss += total.item()
- rpn_loc_loss += rpn_loc.item()
- rpn_cls_loss += rpn_cls.item()
- roi_loc_loss += roi_loc.item()
- roi_cls_loss += roi_cls.item()
-
- pbar.set_postfix(**{'total_loss' : total_loss / (iteration + 1),
- 'rpn_loc' : rpn_loc_loss / (iteration + 1),
- 'rpn_cls' : rpn_cls_loss / (iteration + 1),
- 'roi_loc' : roi_loc_loss / (iteration + 1),
- 'roi_cls' : roi_cls_loss / (iteration + 1),
- 'embed_loss' : embed_loss,
- 'lr' : get_lr(optimizer)})
- pbar.update(1)
- print('Finish Train')
- print('Start Validation')
- with tqdm(total=epoch_step_val, desc=f'Epoch {epoch + 1}/{Epoch}',postfix=dict,mininterval=0.3) as pbar:
- for iteration, batch in enumerate(gen_val):
- if iteration >= epoch_step_val:
- break
- images, boxes, labels = batch[0], batch[1], batch[2]
- with torch.no_grad():
- if cuda:
- images = images.cuda()
- train_util.optimizer.zero_grad()
- _, _, _, _, val_total = train_util.forward(images, boxes, labels, 1)
- val_loss += val_total.item()
-
- pbar.set_postfix(**{'val_loss' : val_loss / (iteration + 1)})
- pbar.update(1)
- print('Finish Validation')
- loss_history.append_loss(epoch + 1, total_loss / epoch_step, val_loss / epoch_step_val)
- eval_callback.on_epoch_end(epoch + 1)
- print('Epoch:'+ str(epoch + 1) + '/' + str(Epoch))
- print('Total Loss: %.3f || Val Loss: %.3f ' % (total_loss / epoch_step, val_loss / epoch_step_val))
-
- #-----------------------------------------------#
- # 保存权值
- #-----------------------------------------------#
- if (epoch + 1) % save_period == 0 or epoch + 1 == Epoch:
- torch.save(model.state_dict(), os.path.join(save_dir, 'ep%03d-loss%.3f-val_loss%.3f.pth' % (epoch + 1, total_loss / epoch_step, val_loss / epoch_step_val)))
- if len(loss_history.val_loss) <= 1 or (val_loss / epoch_step_val) <= min(loss_history.val_loss):
- print('Save best model to best_epoch_weights.pth')
- torch.save(model.state_dict(), os.path.join(save_dir, "best_epoch_weights.pth"))
-
- torch.save(model.state_dict(), os.path.join(save_dir, "last_epoch_weights.pth"))
- class ModelEncoder:
- def __init__(self, layers, secret, key_path, device='cuda'):
- self.device = device
- self.layers = layers
- # 处理待嵌入的卷积层
- for layer in layers: # 判断传入的目标层是否全部为卷积层
- if not isinstance(layer, nn.Conv2d):
- raise TypeError('传入参数不是卷积层')
- weights = [x.weight for x in layers]
- w = self.flatten_parameters(weights)
- w_init = w.clone().detach()
- print('Size of embedding parameters:', w.shape)
- # 对密钥进行处理
- self.secret = torch.tensor(self.string2bin(secret), dtype=torch.float).to(self.device) # the embedding code
- self.secret_len = self.secret.shape[0]
- print(f'Secret:{self.secret} secret length:{self.secret_len}')
- # 生成随机的投影矩阵
- self.X_random = torch.randn((self.secret_len, w_init.shape[0])).to(self.device)
- self.save_tensor(self.X_random, key_path) # 保存投影矩阵至指定位置
- def get_embeder_loss(self):
- weights = [x.weight for x in self.layers]
- w = self.flatten_parameters(weights)
- prob = self.get_prob(self.X_random, w)
- penalty = self.loss_fun(prob, self.secret)
- return penalty
- def string2bin(self, s):
- binary_representation = ''.join(format(ord(x), '08b') for x in s)
- return [int(x) for x in binary_representation]
- def save_tensor(self, tensor, save_path):
- os.makedirs(os.path.dirname(save_path), exist_ok=True)
- tensor = tensor.cpu()
- numpy_array = tensor.numpy()
- np.save(save_path, numpy_array)
- def flatten_parameters(self, weights):
- weights = [weight.permute(2, 3, 1, 0) for weight in weights]
- return torch.cat([torch.mean(x, dim=3).reshape(-1)
- for x in weights])
- def get_prob(self, x_random, w):
- mm = torch.mm(x_random, w.reshape((w.shape[0], 1)))
- return mm.flatten()
- def loss_fun(self, x, y):
- return nn.BCEWithLogitsLoss()(x, y)
|