123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923 |
- import glob
- import json
- import math
- import operator
- import os
- import shutil
- import sys
- try:
- from pycocotools.coco import COCO
- from pycocotools.cocoeval import COCOeval
- except:
- pass
- import cv2
- import matplotlib
- matplotlib.use('Agg')
- from matplotlib import pyplot as plt
- import numpy as np
- '''
- 0,0 ------> x (width)
- |
- | (Left,Top)
- | *_________
- | | |
- | |
- y |_________|
- (height) *
- (Right,Bottom)
- '''
- def log_average_miss_rate(precision, fp_cumsum, num_images):
- """
- log-average miss rate:
- Calculated by averaging miss rates at 9 evenly spaced FPPI points
- between 10e-2 and 10e0, in log-space.
- output:
- lamr | log-average miss rate
- mr | miss rate
- fppi | false positives per image
- references:
- [1] Dollar, Piotr, et al. "Pedestrian Detection: An Evaluation of the
- State of the Art." Pattern Analysis and Machine Intelligence, IEEE
- Transactions on 34.4 (2012): 743 - 761.
- """
- if precision.size == 0:
- lamr = 0
- mr = 1
- fppi = 0
- return lamr, mr, fppi
- fppi = fp_cumsum / float(num_images)
- mr = (1 - precision)
- fppi_tmp = np.insert(fppi, 0, -1.0)
- mr_tmp = np.insert(mr, 0, 1.0)
- ref = np.logspace(-2.0, 0.0, num = 9)
- for i, ref_i in enumerate(ref):
- j = np.where(fppi_tmp <= ref_i)[-1][-1]
- ref[i] = mr_tmp[j]
- lamr = math.exp(np.mean(np.log(np.maximum(1e-10, ref))))
- return lamr, mr, fppi
- """
- throw error and exit
- """
- def error(msg):
- print(msg)
- sys.exit(0)
- """
- check if the number is a float between 0.0 and 1.0
- """
- def is_float_between_0_and_1(value):
- try:
- val = float(value)
- if val > 0.0 and val < 1.0:
- return True
- else:
- return False
- except ValueError:
- return False
- """
- Calculate the AP given the recall and precision array
- 1st) We compute a version of the measured precision/recall curve with
- precision monotonically decreasing
- 2nd) We compute the AP as the area under this curve by numerical integration.
- """
- def voc_ap(rec, prec):
- """
- --- Official matlab code VOC2012---
- mrec=[0 ; rec ; 1];
- mpre=[0 ; prec ; 0];
- for i=numel(mpre)-1:-1:1
- mpre(i)=max(mpre(i),mpre(i+1));
- end
- i=find(mrec(2:end)~=mrec(1:end-1))+1;
- ap=sum((mrec(i)-mrec(i-1)).*mpre(i));
- """
- rec.insert(0, 0.0) # insert 0.0 at begining of list
- rec.append(1.0) # insert 1.0 at end of list
- mrec = rec[:]
- prec.insert(0, 0.0) # insert 0.0 at begining of list
- prec.append(0.0) # insert 0.0 at end of list
- mpre = prec[:]
- """
- This part makes the precision monotonically decreasing
- (goes from the end to the beginning)
- matlab: for i=numel(mpre)-1:-1:1
- mpre(i)=max(mpre(i),mpre(i+1));
- """
- for i in range(len(mpre)-2, -1, -1):
- mpre[i] = max(mpre[i], mpre[i+1])
- """
- This part creates a list of indexes where the recall changes
- matlab: i=find(mrec(2:end)~=mrec(1:end-1))+1;
- """
- i_list = []
- for i in range(1, len(mrec)):
- if mrec[i] != mrec[i-1]:
- i_list.append(i) # if it was matlab would be i + 1
- """
- The Average Precision (AP) is the area under the curve
- (numerical integration)
- matlab: ap=sum((mrec(i)-mrec(i-1)).*mpre(i));
- """
- ap = 0.0
- for i in i_list:
- ap += ((mrec[i]-mrec[i-1])*mpre[i])
- return ap, mrec, mpre
- """
- Convert the lines of a file to a list
- """
- def file_lines_to_list(path):
- # open txt file lines to a list
- with open(path) as f:
- content = f.readlines()
- # remove whitespace characters like `\n` at the end of each line
- content = [x.strip() for x in content]
- return content
- """
- Draws text in image
- """
- def draw_text_in_image(img, text, pos, color, line_width):
- font = cv2.FONT_HERSHEY_PLAIN
- fontScale = 1
- lineType = 1
- bottomLeftCornerOfText = pos
- cv2.putText(img, text,
- bottomLeftCornerOfText,
- font,
- fontScale,
- color,
- lineType)
- text_width, _ = cv2.getTextSize(text, font, fontScale, lineType)[0]
- return img, (line_width + text_width)
- """
- Plot - adjust axes
- """
- def adjust_axes(r, t, fig, axes):
- # get text width for re-scaling
- bb = t.get_window_extent(renderer=r)
- text_width_inches = bb.width / fig.dpi
- # get axis width in inches
- current_fig_width = fig.get_figwidth()
- new_fig_width = current_fig_width + text_width_inches
- propotion = new_fig_width / current_fig_width
- # get axis limit
- x_lim = axes.get_xlim()
- axes.set_xlim([x_lim[0], x_lim[1]*propotion])
- """
- Draw plot using Matplotlib
- """
- def draw_plot_func(dictionary, n_classes, window_title, plot_title, x_label, output_path, to_show, plot_color, true_p_bar):
- # sort the dictionary by decreasing value, into a list of tuples
- sorted_dic_by_value = sorted(dictionary.items(), key=operator.itemgetter(1))
- # unpacking the list of tuples into two lists
- sorted_keys, sorted_values = zip(*sorted_dic_by_value)
- #
- if true_p_bar != "":
- """
- Special case to draw in:
- - green -> TP: True Positives (object detected and matches ground-truth)
- - red -> FP: False Positives (object detected but does not match ground-truth)
- - orange -> FN: False Negatives (object not detected but present in the ground-truth)
- """
- fp_sorted = []
- tp_sorted = []
- for key in sorted_keys:
- fp_sorted.append(dictionary[key] - true_p_bar[key])
- tp_sorted.append(true_p_bar[key])
- plt.barh(range(n_classes), fp_sorted, align='center', color='crimson', label='False Positive')
- plt.barh(range(n_classes), tp_sorted, align='center', color='forestgreen', label='True Positive', left=fp_sorted)
- # add legend
- plt.legend(loc='lower right')
- """
- Write number on side of bar
- """
- fig = plt.gcf() # gcf - get current figure
- axes = plt.gca()
- r = fig.canvas.get_renderer()
- for i, val in enumerate(sorted_values):
- fp_val = fp_sorted[i]
- tp_val = tp_sorted[i]
- fp_str_val = " " + str(fp_val)
- tp_str_val = fp_str_val + " " + str(tp_val)
- # trick to paint multicolor with offset:
- # first paint everything and then repaint the first number
- t = plt.text(val, i, tp_str_val, color='forestgreen', va='center', fontweight='bold')
- plt.text(val, i, fp_str_val, color='crimson', va='center', fontweight='bold')
- if i == (len(sorted_values)-1): # largest bar
- adjust_axes(r, t, fig, axes)
- else:
- plt.barh(range(n_classes), sorted_values, color=plot_color)
- """
- Write number on side of bar
- """
- fig = plt.gcf() # gcf - get current figure
- axes = plt.gca()
- r = fig.canvas.get_renderer()
- for i, val in enumerate(sorted_values):
- str_val = " " + str(val) # add a space before
- if val < 1.0:
- str_val = " {0:.2f}".format(val)
- t = plt.text(val, i, str_val, color=plot_color, va='center', fontweight='bold')
- # re-set axes to show number inside the figure
- if i == (len(sorted_values)-1): # largest bar
- adjust_axes(r, t, fig, axes)
- # set window title
- fig.canvas.manager.set_window_title(window_title)
- # write classes in y axis
- tick_font_size = 12
- plt.yticks(range(n_classes), sorted_keys, fontsize=tick_font_size)
- """
- Re-scale height accordingly
- """
- init_height = fig.get_figheight()
- # comput the matrix height in points and inches
- dpi = fig.dpi
- height_pt = n_classes * (tick_font_size * 1.4) # 1.4 (some spacing)
- height_in = height_pt / dpi
- # compute the required figure height
- top_margin = 0.15 # in percentage of the figure height
- bottom_margin = 0.05 # in percentage of the figure height
- figure_height = height_in / (1 - top_margin - bottom_margin)
- # set new height
- if figure_height > init_height:
- fig.set_figheight(figure_height)
- # set plot title
- plt.title(plot_title, fontsize=14)
- # set axis titles
- # plt.xlabel('classes')
- plt.xlabel(x_label, fontsize='large')
- # adjust size of window
- fig.tight_layout()
- # save the plot
- fig.savefig(output_path)
- # show image
- if to_show:
- plt.show()
- # close the plot
- plt.close()
- def get_map(MINOVERLAP, draw_plot, score_threhold=0.5, path = './map_out'):
- GT_PATH = os.path.join(path, 'ground-truth')
- DR_PATH = os.path.join(path, 'detection-results')
- IMG_PATH = os.path.join(path, 'images-optional')
- TEMP_FILES_PATH = os.path.join(path, '.temp_files')
- RESULTS_FILES_PATH = os.path.join(path, 'results')
- show_animation = True
- if os.path.exists(IMG_PATH):
- for dirpath, dirnames, files in os.walk(IMG_PATH):
- if not files:
- show_animation = False
- else:
- show_animation = False
- if not os.path.exists(TEMP_FILES_PATH):
- os.makedirs(TEMP_FILES_PATH)
-
- if os.path.exists(RESULTS_FILES_PATH):
- shutil.rmtree(RESULTS_FILES_PATH)
- else:
- os.makedirs(RESULTS_FILES_PATH)
- if draw_plot:
- try:
- matplotlib.use('TkAgg')
- except:
- pass
- os.makedirs(os.path.join(RESULTS_FILES_PATH, "AP"))
- os.makedirs(os.path.join(RESULTS_FILES_PATH, "F1"))
- os.makedirs(os.path.join(RESULTS_FILES_PATH, "Recall"))
- os.makedirs(os.path.join(RESULTS_FILES_PATH, "Precision"))
- if show_animation:
- os.makedirs(os.path.join(RESULTS_FILES_PATH, "images", "detections_one_by_one"))
- ground_truth_files_list = glob.glob(GT_PATH + '/*.txt')
- if len(ground_truth_files_list) == 0:
- error("Error: No ground-truth files found!")
- ground_truth_files_list.sort()
- gt_counter_per_class = {}
- counter_images_per_class = {}
- for txt_file in ground_truth_files_list:
- file_id = txt_file.split(".txt", 1)[0]
- file_id = os.path.basename(os.path.normpath(file_id))
- temp_path = os.path.join(DR_PATH, (file_id + ".txt"))
- if not os.path.exists(temp_path):
- error_msg = "Error. File not found: {}\n".format(temp_path)
- error(error_msg)
- lines_list = file_lines_to_list(txt_file)
- bounding_boxes = []
- is_difficult = False
- already_seen_classes = []
- for line in lines_list:
- try:
- if "difficult" in line:
- class_name, left, top, right, bottom, _difficult = line.split()
- is_difficult = True
- else:
- class_name, left, top, right, bottom = line.split()
- except:
- if "difficult" in line:
- line_split = line.split()
- _difficult = line_split[-1]
- bottom = line_split[-2]
- right = line_split[-3]
- top = line_split[-4]
- left = line_split[-5]
- class_name = ""
- for name in line_split[:-5]:
- class_name += name + " "
- class_name = class_name[:-1]
- is_difficult = True
- else:
- line_split = line.split()
- bottom = line_split[-1]
- right = line_split[-2]
- top = line_split[-3]
- left = line_split[-4]
- class_name = ""
- for name in line_split[:-4]:
- class_name += name + " "
- class_name = class_name[:-1]
- bbox = left + " " + top + " " + right + " " + bottom
- if is_difficult:
- bounding_boxes.append({"class_name":class_name, "bbox":bbox, "used":False, "difficult":True})
- is_difficult = False
- else:
- bounding_boxes.append({"class_name":class_name, "bbox":bbox, "used":False})
- if class_name in gt_counter_per_class:
- gt_counter_per_class[class_name] += 1
- else:
- gt_counter_per_class[class_name] = 1
- if class_name not in already_seen_classes:
- if class_name in counter_images_per_class:
- counter_images_per_class[class_name] += 1
- else:
- counter_images_per_class[class_name] = 1
- already_seen_classes.append(class_name)
- with open(TEMP_FILES_PATH + "/" + file_id + "_ground_truth.json", 'w') as outfile:
- json.dump(bounding_boxes, outfile)
- gt_classes = list(gt_counter_per_class.keys())
- gt_classes = sorted(gt_classes)
- n_classes = len(gt_classes)
- dr_files_list = glob.glob(DR_PATH + '/*.txt')
- dr_files_list.sort()
- for class_index, class_name in enumerate(gt_classes):
- bounding_boxes = []
- for txt_file in dr_files_list:
- file_id = txt_file.split(".txt",1)[0]
- file_id = os.path.basename(os.path.normpath(file_id))
- temp_path = os.path.join(GT_PATH, (file_id + ".txt"))
- if class_index == 0:
- if not os.path.exists(temp_path):
- error_msg = "Error. File not found: {}\n".format(temp_path)
- error(error_msg)
- lines = file_lines_to_list(txt_file)
- for line in lines:
- try:
- tmp_class_name, confidence, left, top, right, bottom = line.split()
- except:
- line_split = line.split()
- bottom = line_split[-1]
- right = line_split[-2]
- top = line_split[-3]
- left = line_split[-4]
- confidence = line_split[-5]
- tmp_class_name = ""
- for name in line_split[:-5]:
- tmp_class_name += name + " "
- tmp_class_name = tmp_class_name[:-1]
- if tmp_class_name == class_name:
- bbox = left + " " + top + " " + right + " " +bottom
- bounding_boxes.append({"confidence":confidence, "file_id":file_id, "bbox":bbox})
- bounding_boxes.sort(key=lambda x:float(x['confidence']), reverse=True)
- with open(TEMP_FILES_PATH + "/" + class_name + "_dr.json", 'w') as outfile:
- json.dump(bounding_boxes, outfile)
- sum_AP = 0.0
- ap_dictionary = {}
- lamr_dictionary = {}
- with open(RESULTS_FILES_PATH + "/results.txt", 'w') as results_file:
- results_file.write("# AP and precision/recall per class\n")
- count_true_positives = {}
- for class_index, class_name in enumerate(gt_classes):
- count_true_positives[class_name] = 0
- dr_file = TEMP_FILES_PATH + "/" + class_name + "_dr.json"
- dr_data = json.load(open(dr_file))
- nd = len(dr_data)
- tp = [0] * nd
- fp = [0] * nd
- score = [0] * nd
- score_threhold_idx = 0
- for idx, detection in enumerate(dr_data):
- file_id = detection["file_id"]
- score[idx] = float(detection["confidence"])
- if score[idx] >= score_threhold:
- score_threhold_idx = idx
- if show_animation:
- ground_truth_img = glob.glob1(IMG_PATH, file_id + ".*")
- if len(ground_truth_img) == 0:
- error("Error. Image not found with id: " + file_id)
- elif len(ground_truth_img) > 1:
- error("Error. Multiple image with id: " + file_id)
- else:
- img = cv2.imread(IMG_PATH + "/" + ground_truth_img[0])
- img_cumulative_path = RESULTS_FILES_PATH + "/images/" + ground_truth_img[0]
- if os.path.isfile(img_cumulative_path):
- img_cumulative = cv2.imread(img_cumulative_path)
- else:
- img_cumulative = img.copy()
- bottom_border = 60
- BLACK = [0, 0, 0]
- img = cv2.copyMakeBorder(img, 0, bottom_border, 0, 0, cv2.BORDER_CONSTANT, value=BLACK)
- gt_file = TEMP_FILES_PATH + "/" + file_id + "_ground_truth.json"
- ground_truth_data = json.load(open(gt_file))
- ovmax = -1
- gt_match = -1
- bb = [float(x) for x in detection["bbox"].split()]
- for obj in ground_truth_data:
- if obj["class_name"] == class_name:
- bbgt = [ float(x) for x in obj["bbox"].split() ]
- bi = [max(bb[0],bbgt[0]), max(bb[1],bbgt[1]), min(bb[2],bbgt[2]), min(bb[3],bbgt[3])]
- iw = bi[2] - bi[0] + 1
- ih = bi[3] - bi[1] + 1
- if iw > 0 and ih > 0:
- ua = (bb[2] - bb[0] + 1) * (bb[3] - bb[1] + 1) + (bbgt[2] - bbgt[0]
- + 1) * (bbgt[3] - bbgt[1] + 1) - iw * ih
- ov = iw * ih / ua
- if ov > ovmax:
- ovmax = ov
- gt_match = obj
- if show_animation:
- status = "NO MATCH FOUND!"
-
- min_overlap = MINOVERLAP
- if ovmax >= min_overlap:
- if "difficult" not in gt_match:
- if not bool(gt_match["used"]):
- tp[idx] = 1
- gt_match["used"] = True
- count_true_positives[class_name] += 1
- with open(gt_file, 'w') as f:
- f.write(json.dumps(ground_truth_data))
- if show_animation:
- status = "MATCH!"
- else:
- fp[idx] = 1
- if show_animation:
- status = "REPEATED MATCH!"
- else:
- fp[idx] = 1
- if ovmax > 0:
- status = "INSUFFICIENT OVERLAP"
- """
- Draw image to show animation
- """
- if show_animation:
- height, widht = img.shape[:2]
- white = (255,255,255)
- light_blue = (255,200,100)
- green = (0,255,0)
- light_red = (30,30,255)
- margin = 10
- # 1nd line
- v_pos = int(height - margin - (bottom_border / 2.0))
- text = "Image: " + ground_truth_img[0] + " "
- img, line_width = draw_text_in_image(img, text, (margin, v_pos), white, 0)
- text = "Class [" + str(class_index) + "/" + str(n_classes) + "]: " + class_name + " "
- img, line_width = draw_text_in_image(img, text, (margin + line_width, v_pos), light_blue, line_width)
- if ovmax != -1:
- color = light_red
- if status == "INSUFFICIENT OVERLAP":
- text = "IoU: {0:.2f}% ".format(ovmax*100) + "< {0:.2f}% ".format(min_overlap*100)
- else:
- text = "IoU: {0:.2f}% ".format(ovmax*100) + ">= {0:.2f}% ".format(min_overlap*100)
- color = green
- img, _ = draw_text_in_image(img, text, (margin + line_width, v_pos), color, line_width)
- # 2nd line
- v_pos += int(bottom_border / 2.0)
- rank_pos = str(idx+1)
- text = "Detection #rank: " + rank_pos + " confidence: {0:.2f}% ".format(float(detection["confidence"])*100)
- img, line_width = draw_text_in_image(img, text, (margin, v_pos), white, 0)
- color = light_red
- if status == "MATCH!":
- color = green
- text = "Result: " + status + " "
- img, line_width = draw_text_in_image(img, text, (margin + line_width, v_pos), color, line_width)
- font = cv2.FONT_HERSHEY_SIMPLEX
- if ovmax > 0:
- bbgt = [ int(round(float(x))) for x in gt_match["bbox"].split() ]
- cv2.rectangle(img,(bbgt[0],bbgt[1]),(bbgt[2],bbgt[3]),light_blue,2)
- cv2.rectangle(img_cumulative,(bbgt[0],bbgt[1]),(bbgt[2],bbgt[3]),light_blue,2)
- cv2.putText(img_cumulative, class_name, (bbgt[0],bbgt[1] - 5), font, 0.6, light_blue, 1, cv2.LINE_AA)
- bb = [int(i) for i in bb]
- cv2.rectangle(img,(bb[0],bb[1]),(bb[2],bb[3]),color,2)
- cv2.rectangle(img_cumulative,(bb[0],bb[1]),(bb[2],bb[3]),color,2)
- cv2.putText(img_cumulative, class_name, (bb[0],bb[1] - 5), font, 0.6, color, 1, cv2.LINE_AA)
- cv2.imshow("Animation", img)
- cv2.waitKey(20)
- output_img_path = RESULTS_FILES_PATH + "/images/detections_one_by_one/" + class_name + "_detection" + str(idx) + ".jpg"
- cv2.imwrite(output_img_path, img)
- cv2.imwrite(img_cumulative_path, img_cumulative)
- cumsum = 0
- for idx, val in enumerate(fp):
- fp[idx] += cumsum
- cumsum += val
-
- cumsum = 0
- for idx, val in enumerate(tp):
- tp[idx] += cumsum
- cumsum += val
- rec = tp[:]
- for idx, val in enumerate(tp):
- rec[idx] = float(tp[idx]) / np.maximum(gt_counter_per_class[class_name], 1)
- prec = tp[:]
- for idx, val in enumerate(tp):
- prec[idx] = float(tp[idx]) / np.maximum((fp[idx] + tp[idx]), 1)
- ap, mrec, mprec = voc_ap(rec[:], prec[:])
- F1 = np.array(rec)*np.array(prec)*2 / np.where((np.array(prec)+np.array(rec))==0, 1, (np.array(prec)+np.array(rec)))
- sum_AP += ap
- text = "{0:.2f}%".format(ap*100) + " = " + class_name + " AP " #class_name + " AP = {0:.2f}%".format(ap*100)
- if len(prec)>0:
- F1_text = "{0:.2f}".format(F1[score_threhold_idx]) + " = " + class_name + " F1 "
- Recall_text = "{0:.2f}%".format(rec[score_threhold_idx]*100) + " = " + class_name + " Recall "
- Precision_text = "{0:.2f}%".format(prec[score_threhold_idx]*100) + " = " + class_name + " Precision "
- else:
- F1_text = "0.00" + " = " + class_name + " F1 "
- Recall_text = "0.00%" + " = " + class_name + " Recall "
- Precision_text = "0.00%" + " = " + class_name + " Precision "
- rounded_prec = [ '%.2f' % elem for elem in prec ]
- rounded_rec = [ '%.2f' % elem for elem in rec ]
- results_file.write(text + "\n Precision: " + str(rounded_prec) + "\n Recall :" + str(rounded_rec) + "\n\n")
-
- if len(prec)>0:
- print(text + "\t||\tscore_threhold=" + str(score_threhold) + " : " + "F1=" + "{0:.2f}".format(F1[score_threhold_idx])\
- + " ; Recall=" + "{0:.2f}%".format(rec[score_threhold_idx]*100) + " ; Precision=" + "{0:.2f}%".format(prec[score_threhold_idx]*100))
- else:
- print(text + "\t||\tscore_threhold=" + str(score_threhold) + " : " + "F1=0.00% ; Recall=0.00% ; Precision=0.00%")
- ap_dictionary[class_name] = ap
- n_images = counter_images_per_class[class_name]
- lamr, mr, fppi = log_average_miss_rate(np.array(rec), np.array(fp), n_images)
- lamr_dictionary[class_name] = lamr
- if draw_plot:
- plt.plot(rec, prec, '-o')
- area_under_curve_x = mrec[:-1] + [mrec[-2]] + [mrec[-1]]
- area_under_curve_y = mprec[:-1] + [0.0] + [mprec[-1]]
- plt.fill_between(area_under_curve_x, 0, area_under_curve_y, alpha=0.2, edgecolor='r')
- fig = plt.gcf()
- fig.canvas.manager.set_window_title('AP ' + class_name)
- plt.title('class: ' + text)
- plt.xlabel('Recall')
- plt.ylabel('Precision')
- axes = plt.gca()
- axes.set_xlim([0.0,1.0])
- axes.set_ylim([0.0,1.05])
- fig.savefig(RESULTS_FILES_PATH + "/AP/" + class_name + ".png")
- plt.cla()
- plt.plot(score, F1, "-", color='orangered')
- plt.title('class: ' + F1_text + "\nscore_threhold=" + str(score_threhold))
- plt.xlabel('Score_Threhold')
- plt.ylabel('F1')
- axes = plt.gca()
- axes.set_xlim([0.0,1.0])
- axes.set_ylim([0.0,1.05])
- fig.savefig(RESULTS_FILES_PATH + "/F1/" + class_name + ".png")
- plt.cla()
- plt.plot(score, rec, "-H", color='gold')
- plt.title('class: ' + Recall_text + "\nscore_threhold=" + str(score_threhold))
- plt.xlabel('Score_Threhold')
- plt.ylabel('Recall')
- axes = plt.gca()
- axes.set_xlim([0.0,1.0])
- axes.set_ylim([0.0,1.05])
- fig.savefig(RESULTS_FILES_PATH + "/Recall/" + class_name + ".png")
- plt.cla()
- plt.plot(score, prec, "-s", color='palevioletred')
- plt.title('class: ' + Precision_text + "\nscore_threhold=" + str(score_threhold))
- plt.xlabel('Score_Threhold')
- plt.ylabel('Precision')
- axes = plt.gca()
- axes.set_xlim([0.0,1.0])
- axes.set_ylim([0.0,1.05])
- fig.savefig(RESULTS_FILES_PATH + "/Precision/" + class_name + ".png")
- plt.cla()
-
- if show_animation:
- cv2.destroyAllWindows()
- if n_classes == 0:
- print("未检测到任何种类,请检查标签信息与get_map.py中的classes_path是否修改。")
- return 0
- results_file.write("\n# mAP of all classes\n")
- mAP = sum_AP / n_classes
- text = "mAP = {0:.2f}%".format(mAP*100)
- results_file.write(text + "\n")
- print(text)
- shutil.rmtree(TEMP_FILES_PATH)
- """
- Count total of detection-results
- """
- det_counter_per_class = {}
- for txt_file in dr_files_list:
- lines_list = file_lines_to_list(txt_file)
- for line in lines_list:
- class_name = line.split()[0]
- if class_name in det_counter_per_class:
- det_counter_per_class[class_name] += 1
- else:
- det_counter_per_class[class_name] = 1
- dr_classes = list(det_counter_per_class.keys())
- """
- Write number of ground-truth objects per class to results.txt
- """
- with open(RESULTS_FILES_PATH + "/results.txt", 'a') as results_file:
- results_file.write("\n# Number of ground-truth objects per class\n")
- for class_name in sorted(gt_counter_per_class):
- results_file.write(class_name + ": " + str(gt_counter_per_class[class_name]) + "\n")
- """
- Finish counting true positives
- """
- for class_name in dr_classes:
- if class_name not in gt_classes:
- count_true_positives[class_name] = 0
- """
- Write number of detected objects per class to results.txt
- """
- with open(RESULTS_FILES_PATH + "/results.txt", 'a') as results_file:
- results_file.write("\n# Number of detected objects per class\n")
- for class_name in sorted(dr_classes):
- n_det = det_counter_per_class[class_name]
- text = class_name + ": " + str(n_det)
- text += " (tp:" + str(count_true_positives[class_name]) + ""
- text += ", fp:" + str(n_det - count_true_positives[class_name]) + ")\n"
- results_file.write(text)
- """
- Plot the total number of occurences of each class in the ground-truth
- """
- if draw_plot:
- window_title = "ground-truth-info"
- plot_title = "ground-truth\n"
- plot_title += "(" + str(len(ground_truth_files_list)) + " files and " + str(n_classes) + " classes)"
- x_label = "Number of objects per class"
- output_path = RESULTS_FILES_PATH + "/ground-truth-info.png"
- to_show = False
- plot_color = 'forestgreen'
- draw_plot_func(
- gt_counter_per_class,
- n_classes,
- window_title,
- plot_title,
- x_label,
- output_path,
- to_show,
- plot_color,
- '',
- )
- # """
- # Plot the total number of occurences of each class in the "detection-results" folder
- # """
- # if draw_plot:
- # window_title = "detection-results-info"
- # # Plot title
- # plot_title = "detection-results\n"
- # plot_title += "(" + str(len(dr_files_list)) + " files and "
- # count_non_zero_values_in_dictionary = sum(int(x) > 0 for x in list(det_counter_per_class.values()))
- # plot_title += str(count_non_zero_values_in_dictionary) + " detected classes)"
- # # end Plot title
- # x_label = "Number of objects per class"
- # output_path = RESULTS_FILES_PATH + "/detection-results-info.png"
- # to_show = False
- # plot_color = 'forestgreen'
- # true_p_bar = count_true_positives
- # draw_plot_func(
- # det_counter_per_class,
- # len(det_counter_per_class),
- # window_title,
- # plot_title,
- # x_label,
- # output_path,
- # to_show,
- # plot_color,
- # true_p_bar
- # )
- """
- Draw log-average miss rate plot (Show lamr of all classes in decreasing order)
- """
- if draw_plot:
- window_title = "lamr"
- plot_title = "log-average miss rate"
- x_label = "log-average miss rate"
- output_path = RESULTS_FILES_PATH + "/lamr.png"
- to_show = False
- plot_color = 'royalblue'
- draw_plot_func(
- lamr_dictionary,
- n_classes,
- window_title,
- plot_title,
- x_label,
- output_path,
- to_show,
- plot_color,
- ""
- )
- """
- Draw mAP plot (Show AP's of all classes in decreasing order)
- """
- if draw_plot:
- window_title = "mAP"
- plot_title = "mAP = {0:.2f}%".format(mAP*100)
- x_label = "Average Precision"
- output_path = RESULTS_FILES_PATH + "/mAP.png"
- to_show = True
- plot_color = 'royalblue'
- draw_plot_func(
- ap_dictionary,
- n_classes,
- window_title,
- plot_title,
- x_label,
- output_path,
- to_show,
- plot_color,
- ""
- )
- return mAP
- def preprocess_gt(gt_path, class_names):
- image_ids = os.listdir(gt_path)
- results = {}
- images = []
- bboxes = []
- for i, image_id in enumerate(image_ids):
- lines_list = file_lines_to_list(os.path.join(gt_path, image_id))
- boxes_per_image = []
- image = {}
- image_id = os.path.splitext(image_id)[0]
- image['file_name'] = image_id + '.jpg'
- image['width'] = 1
- image['height'] = 1
- #-----------------------------------------------------------------#
- # 感谢 多学学英语吧 的提醒
- # 解决了'Results do not correspond to current coco set'问题
- #-----------------------------------------------------------------#
- image['id'] = str(image_id)
- for line in lines_list:
- difficult = 0
- if "difficult" in line:
- line_split = line.split()
- left, top, right, bottom, _difficult = line_split[-5:]
- class_name = ""
- for name in line_split[:-5]:
- class_name += name + " "
- class_name = class_name[:-1]
- difficult = 1
- else:
- line_split = line.split()
- left, top, right, bottom = line_split[-4:]
- class_name = ""
- for name in line_split[:-4]:
- class_name += name + " "
- class_name = class_name[:-1]
-
- left, top, right, bottom = float(left), float(top), float(right), float(bottom)
- if class_name not in class_names:
- continue
- cls_id = class_names.index(class_name) + 1
- bbox = [left, top, right - left, bottom - top, difficult, str(image_id), cls_id, (right - left) * (bottom - top) - 10.0]
- boxes_per_image.append(bbox)
- images.append(image)
- bboxes.extend(boxes_per_image)
- results['images'] = images
- categories = []
- for i, cls in enumerate(class_names):
- category = {}
- category['supercategory'] = cls
- category['name'] = cls
- category['id'] = i + 1
- categories.append(category)
- results['categories'] = categories
- annotations = []
- for i, box in enumerate(bboxes):
- annotation = {}
- annotation['area'] = box[-1]
- annotation['category_id'] = box[-2]
- annotation['image_id'] = box[-3]
- annotation['iscrowd'] = box[-4]
- annotation['bbox'] = box[:4]
- annotation['id'] = i
- annotations.append(annotation)
- results['annotations'] = annotations
- return results
- def preprocess_dr(dr_path, class_names):
- image_ids = os.listdir(dr_path)
- results = []
- for image_id in image_ids:
- lines_list = file_lines_to_list(os.path.join(dr_path, image_id))
- image_id = os.path.splitext(image_id)[0]
- for line in lines_list:
- line_split = line.split()
- confidence, left, top, right, bottom = line_split[-5:]
- class_name = ""
- for name in line_split[:-5]:
- class_name += name + " "
- class_name = class_name[:-1]
- left, top, right, bottom = float(left), float(top), float(right), float(bottom)
- result = {}
- result["image_id"] = str(image_id)
- if class_name not in class_names:
- continue
- result["category_id"] = class_names.index(class_name) + 1
- result["bbox"] = [left, top, right - left, bottom - top]
- result["score"] = float(confidence)
- results.append(result)
- return results
-
- def get_coco_map(class_names, path):
- GT_PATH = os.path.join(path, 'ground-truth')
- DR_PATH = os.path.join(path, 'detection-results')
- COCO_PATH = os.path.join(path, 'coco_eval')
- if not os.path.exists(COCO_PATH):
- os.makedirs(COCO_PATH)
- GT_JSON_PATH = os.path.join(COCO_PATH, 'instances_gt.json')
- DR_JSON_PATH = os.path.join(COCO_PATH, 'instances_dr.json')
- with open(GT_JSON_PATH, "w") as f:
- results_gt = preprocess_gt(GT_PATH, class_names)
- json.dump(results_gt, f, indent=4)
- with open(DR_JSON_PATH, "w") as f:
- results_dr = preprocess_dr(DR_PATH, class_names)
- json.dump(results_dr, f, indent=4)
- if len(results_dr) == 0:
- print("未检测到任何目标。")
- return [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
- cocoGt = COCO(GT_JSON_PATH)
- cocoDt = cocoGt.loadRes(DR_JSON_PATH)
- cocoEval = COCOeval(cocoGt, cocoDt, 'bbox')
- cocoEval.evaluate()
- cocoEval.accumulate()
- cocoEval.summarize()
- return cocoEval.stats
|