# 根据yolov7改编:https://github.com/WongKinYiu/yolov7 import torch import os import sys project_root = '/home/yhsun/classification-main/' sys.path.append(project_root) # print("Project root added to sys.path:", project_root) # Verify that we can access the model package directly import model from model.layer import cbs, elan, mp, sppcspc, linear_head class yolov7_cls(torch.nn.Module): def __init__(self, args): super().__init__() dim_dict = {'n': 8, 's': 16, 'm': 32, 'l': 64} n_dict = {'n': 1, 's': 1, 'm': 2, 'l': 3} dim = dim_dict[args.model_type] n = n_dict[args.model_type] output_class = args.output_class # 网络结构 if not args.prune: # 正常版本 self.l0 = cbs(3, dim, 1, 1) self.l1 = cbs(dim, 2 * dim, 3, 2) # input_size/2 self.l2 = cbs(2 * dim, 2 * dim, 1, 1) self.l3 = cbs(2 * dim, 4 * dim, 3, 2) # input_size/4 self.l4 = elan(4 * dim, 8 * dim, n) self.l5 = mp(8 * dim, 8 * dim) # input_size/8 self.l6 = elan(8 * dim, 16 * dim, n) self.l7 = mp(16 * dim, 16 * dim) # input_size/16 self.l8 = elan(16 * dim, 32 * dim, n) self.l9 = mp(32 * dim, 32 * dim) # input_size/32 self.l10 = elan(32 * dim, 32 * dim, n) self.l11 = sppcspc(32 * dim, 16 * dim) self.l12 = cbs(16 * dim, 8 * dim, 1, 1) self.linear_head = linear_head(8 * dim, output_class) else: # 剪枝版本 config = args.prune_num self.l0 = cbs(3, config[0], 1, 1) self.l1 = cbs(config[0], config[1], 3, 2) # input_size/2 self.l2 = cbs(config[1], config[2], 1, 1) self.l3 = cbs(config[2], config[3], 3, 2) # input_size/4 self.l4 = elan(config[3], None, n, config[4:7 + 2 * n]) self.l5 = mp(config[6 + 2 * n], None, config[7 + 2 * n:10 + 2 * n]) # input_size/8 self.l6 = elan(config[7 + 2 * n] + config[9 + 2 * n], None, n, config[10 + 2 * n:13 + 4 * n]) self.l7 = mp(config[12 + 4 * n], None, config[13 + 4 * n:16 + 4 * n]) # input_size/16 self.l8 = elan(config[13 + 4 * n] + config[15 + 4 * n], None, n, config[16 + 4 * n:19 + 6 * n]) self.l9 = mp(config[18 + 6 * n], None, config[19 + 6 * n:22 + 6 * n]) # input_size/32 self.l10 = elan(config[19 + 6 * n] + config[21 + 6 * n], None, n, config[22 + 6 * n:25 + 8 * n]) self.l11 = sppcspc(config[24 + 8 * n], None, config[25 + 8 * n:32 + 8 * n]) self.l12 = cbs(config[31 + 8 * n], config[32 + 8 * n], 1, 1) self.linear_head = linear_head(config[32 + 8 * n], output_class) def forward(self, x): x = self.l0(x) x = self.l1(x) x = self.l2(x) x = self.l3(x) x = self.l4(x) x = self.l5(x) x = self.l6(x) x = self.l7(x) x = self.l8(x) x = self.l9(x) x = self.l10(x) x = self.l11(x) x = self.l12(x) x = self.linear_head(x) return x if __name__ == '__main__': import argparse parser = argparse.ArgumentParser(description='') parser.add_argument('--prune', default=False, type=bool) parser.add_argument('--model_type', default='n', type=str) parser.add_argument('--input_size', default=32, type=int) parser.add_argument('--output_class', default=10, type=int) args = parser.parse_args() model = yolov7_cls(args) tensor = torch.rand(2, 3, args.input_size, args.input_size, dtype=torch.float32) pred = model(tensor) print(model) print(pred.shape)