#!/usr/bin/env python3 # coding=utf-8 # @Time : 2021/12/17 # @Author : github.com/guofei9987 import numpy as np from numpy.linalg import svd import copy import cv2 from cv2 import dct, idct from pywt import dwt2, idwt2 from .pool import AutoPool class WaterMarkCore: def __init__(self, password_img=1, mode='common', processes=None): self.block_shape = np.array([4, 4]) self.password_img = password_img self.d1, self.d2 = 36, 20 # d1/d2 越大鲁棒性越强,但输出图片的失真越大 # init data self.img, self.img_YUV = None, None # self.img 是原图,self.img_YUV 对像素做了加白偶数化 self.ca, self.hvd, = [np.array([])] * 3, [np.array([])] * 3 # 每个通道 dct 的结果 self.ca_block = [np.array([])] * 3 # 每个 channel 存一个四维 array,代表四维分块后的结果 self.ca_part = [np.array([])] * 3 # 四维分块后,有时因不整除而少一部分,self.ca_part 是少这一部分的 self.ca self.wm_size, self.block_num = 0, 0 # 水印的长度,原图片可插入信息的个数 self.pool = AutoPool(mode=mode, processes=processes) self.fast_mode = False self.alpha = None # 用于处理透明图 def init_block_index(self): self.block_num = self.ca_block_shape[0] * self.ca_block_shape[1] assert self.wm_size < self.block_num, IndexError( '最多可嵌入{}kb信息,多于水印的{}kb信息,溢出'.format(self.block_num / 1000, self.wm_size / 1000)) # self.part_shape 是取整后的ca二维大小,用于嵌入时忽略右边和下面对不齐的细条部分。 self.part_shape = self.ca_block_shape[:2] * self.block_shape self.block_index = [(i, j) for i in range(self.ca_block_shape[0]) for j in range(self.ca_block_shape[1])] def read_img_arr(self, img): # 处理透明图 self.alpha = None if img.shape[2] == 4: if img[:, :, 3].min() < 255: self.alpha = img[:, :, 3] img = img[:, :, :3] # 读入图片->YUV化->加白边使像素变偶数->四维分块 self.img = img.astype(np.float32) self.img_shape = self.img.shape[:2] # 如果不是偶数,那么补上白边,Y(明亮度)UV(颜色) self.img_YUV = cv2.copyMakeBorder(cv2.cvtColor(self.img, cv2.COLOR_BGR2YUV), 0, self.img.shape[0] % 2, 0, self.img.shape[1] % 2, cv2.BORDER_CONSTANT, value=(0, 0, 0)) self.ca_shape = [(i + 1) // 2 for i in self.img_shape] self.ca_block_shape = (self.ca_shape[0] // self.block_shape[0], self.ca_shape[1] // self.block_shape[1], self.block_shape[0], self.block_shape[1]) strides = 4 * np.array([self.ca_shape[1] * self.block_shape[0], self.block_shape[1], self.ca_shape[1], 1]) for channel in range(3): self.ca[channel], self.hvd[channel] = dwt2(self.img_YUV[:, :, channel], 'haar') # 转为4维度 self.ca_block[channel] = np.lib.stride_tricks.as_strided(self.ca[channel].astype(np.float32), self.ca_block_shape, strides) def read_wm(self, wm_bit): self.wm_bit = wm_bit self.wm_size = wm_bit.size def block_add_wm(self, arg): if self.fast_mode: return self.block_add_wm_fast(arg) else: return self.block_add_wm_slow(arg) def block_add_wm_slow(self, arg): block, shuffler, i = arg # dct->(flatten->加密->逆flatten)->svd->打水印->逆svd->(flatten->解密->逆flatten)->逆dct wm_1 = self.wm_bit[i % self.wm_size] block_dct = dct(block) # 加密(打乱顺序) block_dct_shuffled = block_dct.flatten()[shuffler].reshape(self.block_shape) u, s, v = svd(block_dct_shuffled) s[0] = (s[0] // self.d1 + 1 / 4 + 1 / 2 * wm_1) * self.d1 if self.d2: s[1] = (s[1] // self.d2 + 1 / 4 + 1 / 2 * wm_1) * self.d2 block_dct_flatten = np.dot(u, np.dot(np.diag(s), v)).flatten() block_dct_flatten[shuffler] = block_dct_flatten.copy() return idct(block_dct_flatten.reshape(self.block_shape)) def block_add_wm_fast(self, arg): # dct->svd->打水印->逆svd->逆dct block, shuffler, i = arg wm_1 = self.wm_bit[i % self.wm_size] u, s, v = svd(dct(block)) s[0] = (s[0] // self.d1 + 1 / 4 + 1 / 2 * wm_1) * self.d1 return idct(np.dot(u, np.dot(np.diag(s), v))) def embed(self): self.init_block_index() embed_ca = copy.deepcopy(self.ca) embed_YUV = [np.array([])] * 3 self.idx_shuffle = random_strategy1(self.password_img, self.block_num, self.block_shape[0] * self.block_shape[1]) for channel in range(3): tmp = self.pool.map(self.block_add_wm, [(self.ca_block[channel][self.block_index[i]], self.idx_shuffle[i], i) for i in range(self.block_num)]) for i in range(self.block_num): self.ca_block[channel][self.block_index[i]] = tmp[i] # 4维分块变回2维 self.ca_part[channel] = np.concatenate(np.concatenate(self.ca_block[channel], 1), 1) # 4维分块时右边和下边不能整除的长条保留,其余是主体部分,换成 embed 之后的频域的数据 embed_ca[channel][:self.part_shape[0], :self.part_shape[1]] = self.ca_part[channel] # 逆变换回去 embed_YUV[channel] = idwt2((embed_ca[channel], self.hvd[channel]), "haar") # 合并3通道 embed_img_YUV = np.stack(embed_YUV, axis=2) # 之前如果不是2的整数,增加了白边,这里去除掉 embed_img_YUV = embed_img_YUV[:self.img_shape[0], :self.img_shape[1]] embed_img = cv2.cvtColor(embed_img_YUV, cv2.COLOR_YUV2BGR) embed_img = np.clip(embed_img, a_min=0, a_max=255) if self.alpha is not None: embed_img = cv2.merge([embed_img.astype(np.uint8), self.alpha]) return embed_img def block_get_wm(self, args): if self.fast_mode: return self.block_get_wm_fast(args) else: return self.block_get_wm_slow(args) def block_get_wm_slow(self, args): block, shuffler = args # dct->flatten->加密->逆flatten->svd->解水印 block_dct_shuffled = dct(block).flatten()[shuffler].reshape(self.block_shape) u, s, v = svd(block_dct_shuffled) wm = (s[0] % self.d1 > self.d1 / 2) * 1 if self.d2: tmp = (s[1] % self.d2 > self.d2 / 2) * 1 wm = (wm * 3 + tmp * 1) / 4 return wm def block_get_wm_fast(self, args): block, shuffler = args # dct->svd->解水印 u, s, v = svd(dct(block)) wm = (s[0] % self.d1 > self.d1 / 2) * 1 return wm def extract_raw(self, img): # 每个分块提取 1 bit 信息 self.read_img_arr(img=img) self.init_block_index() wm_block_bit = np.zeros(shape=(3, self.block_num)) # 3个channel,length 个分块提取的水印,全都记录下来 self.idx_shuffle = random_strategy1(seed=self.password_img, size=self.block_num, block_shape=self.block_shape[0] * self.block_shape[1], # 16 ) for channel in range(3): wm_block_bit[channel, :] = self.pool.map(self.block_get_wm, [(self.ca_block[channel][self.block_index[i]], self.idx_shuffle[i]) for i in range(self.block_num)]) return wm_block_bit def extract_avg(self, wm_block_bit): # 对循环嵌入+3个 channel 求平均 wm_avg = np.zeros(shape=self.wm_size) for i in range(self.wm_size): wm_avg[i] = wm_block_bit[:, i::self.wm_size].mean() return wm_avg def extract(self, img, wm_shape): self.wm_size = np.array(wm_shape).prod() # 提取每个分块埋入的 bit: wm_block_bit = self.extract_raw(img=img) # 做平均: wm_avg = self.extract_avg(wm_block_bit) return wm_avg def extract_with_kmeans(self, img, wm_shape): wm_avg = self.extract(img=img, wm_shape=wm_shape) return one_dim_kmeans(wm_avg) def one_dim_kmeans(inputs): threshold = 0 e_tol = 10 ** (-6) center = [inputs.min(), inputs.max()] # 1. 初始化中心点 for i in range(300): threshold = (center[0] + center[1]) / 2 is_class01 = inputs > threshold # 2. 检查所有点与这k个点之间的距离,每个点归类到最近的中心 center = [inputs[~is_class01].mean(), inputs[is_class01].mean()] # 3. 重新找中心点 if np.abs((center[0] + center[1]) / 2 - threshold) < e_tol: # 4. 停止条件 threshold = (center[0] + center[1]) / 2 break is_class01 = inputs > threshold return is_class01 def random_strategy1(seed, size, block_shape): return np.random.RandomState(seed) \ .random(size=(size, block_shape)) \ .argsort(axis=1) def random_strategy2(seed, size, block_shape): one_line = np.random.RandomState(seed) \ .random(size=(1, block_shape)) \ .argsort(axis=1) return np.repeat(one_line, repeats=size, axis=0)