123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687 |
- # 根据yolov7改编:https://github.com/WongKinYiu/yolov7
- import torch
- import os
- import sys
- project_root = '/home/yhsun/classification-main/'
- sys.path.append(project_root)
- # print("Project root added to sys.path:", project_root)
- # Verify that we can access the model package directly
- import model
- from model.layer import cbs, elan, mp, sppcspc, linear_head
- class yolov7_cls(torch.nn.Module):
- def __init__(self, args):
- super().__init__()
- dim_dict = {'n': 8, 's': 16, 'm': 32, 'l': 64}
- n_dict = {'n': 1, 's': 1, 'm': 2, 'l': 3}
- dim = dim_dict[args.model_type]
- n = n_dict[args.model_type]
- output_class = args.output_class
- # 网络结构
- if not args.prune: # 正常版本
- self.l0 = cbs(3, dim, 1, 1)
- self.l1 = cbs(dim, 2 * dim, 3, 2) # input_size/2
- self.l2 = cbs(2 * dim, 2 * dim, 1, 1)
- self.l3 = cbs(2 * dim, 4 * dim, 3, 2) # input_size/4
- self.l4 = elan(4 * dim, 8 * dim, n)
- self.l5 = mp(8 * dim, 8 * dim) # input_size/8
- self.l6 = elan(8 * dim, 16 * dim, n)
- self.l7 = mp(16 * dim, 16 * dim) # input_size/16
- self.l8 = elan(16 * dim, 32 * dim, n)
- self.l9 = mp(32 * dim, 32 * dim) # input_size/32
- self.l10 = elan(32 * dim, 32 * dim, n)
- self.l11 = sppcspc(32 * dim, 16 * dim)
- self.l12 = cbs(16 * dim, 8 * dim, 1, 1)
- self.linear_head = linear_head(8 * dim, output_class)
- else: # 剪枝版本
- config = args.prune_num
- self.l0 = cbs(3, config[0], 1, 1)
- self.l1 = cbs(config[0], config[1], 3, 2) # input_size/2
- self.l2 = cbs(config[1], config[2], 1, 1)
- self.l3 = cbs(config[2], config[3], 3, 2) # input_size/4
- self.l4 = elan(config[3], None, n, config[4:7 + 2 * n])
- self.l5 = mp(config[6 + 2 * n], None, config[7 + 2 * n:10 + 2 * n]) # input_size/8
- self.l6 = elan(config[7 + 2 * n] + config[9 + 2 * n], None, n, config[10 + 2 * n:13 + 4 * n])
- self.l7 = mp(config[12 + 4 * n], None, config[13 + 4 * n:16 + 4 * n]) # input_size/16
- self.l8 = elan(config[13 + 4 * n] + config[15 + 4 * n], None, n, config[16 + 4 * n:19 + 6 * n])
- self.l9 = mp(config[18 + 6 * n], None, config[19 + 6 * n:22 + 6 * n]) # input_size/32
- self.l10 = elan(config[19 + 6 * n] + config[21 + 6 * n], None, n, config[22 + 6 * n:25 + 8 * n])
- self.l11 = sppcspc(config[24 + 8 * n], None, config[25 + 8 * n:32 + 8 * n])
- self.l12 = cbs(config[31 + 8 * n], config[32 + 8 * n], 1, 1)
- self.linear_head = linear_head(config[32 + 8 * n], output_class)
- def forward(self, x):
- x = self.l0(x)
- x = self.l1(x)
- x = self.l2(x)
- x = self.l3(x)
- x = self.l4(x)
- x = self.l5(x)
- x = self.l6(x)
- x = self.l7(x)
- x = self.l8(x)
- x = self.l9(x)
- x = self.l10(x)
- x = self.l11(x)
- x = self.l12(x)
- x = self.linear_head(x)
- return x
- if __name__ == '__main__':
- import argparse
- parser = argparse.ArgumentParser(description='')
- parser.add_argument('--prune', default=False, type=bool)
- parser.add_argument('--model_type', default='n', type=str)
- parser.add_argument('--input_size', default=32, type=int)
- parser.add_argument('--output_class', default=10, type=int)
- args = parser.parse_args()
- model = yolov7_cls(args)
- tensor = torch.rand(2, 3, args.input_size, args.input_size, dtype=torch.float32)
- pred = model(tensor)
- print(model)
- print(pred.shape)
|