|
@@ -53,14 +53,16 @@ class ModelWatermarkProcessor(BlackBoxWatermarkProcessDefine):
|
|
|
for j, image_file in enumerate(batch_files):
|
|
|
predicted_class = np.argmax(outputs[0][j]) # 假设输出是每类的概率
|
|
|
total_predictions += 1
|
|
|
-
|
|
|
+ print(f"predicted_class = {predicted_class}, target_class = {target_class}")
|
|
|
# 比较预测结果与目标分类
|
|
|
if predicted_class == target_class:
|
|
|
correct_predictions += 1
|
|
|
|
|
|
# 计算准确率
|
|
|
accuracy = correct_predictions / total_predictions if total_predictions > 0 else 0
|
|
|
- # logger.debug(f"Predicted batch {i // batch_size + 1}, Accuracy: {accuracy * 100:.2f}%")
|
|
|
+ logger.debug(f"准确率: {accuracy * 100:.2f}%")
|
|
|
+ logger.info(f"共验证:{total_predictions}张")
|
|
|
+ logger.info(f"成功:{correct_predictions}张")
|
|
|
if accuracy >= threshold:
|
|
|
logger.info(f"Predicted batch {i // batch_size + 1}, Accuracy: {accuracy} >= threshold {threshold}")
|
|
|
return True
|