|
@@ -0,0 +1,72 @@
|
|
|
+import numpy as np
|
|
|
+
|
|
|
+
|
|
|
+def calculate_iou(box1, box2):
|
|
|
+ # 计算IoU的基础方法
|
|
|
+ inter_x_min = max(box1[0], box2[0])
|
|
|
+ inter_y_min = max(box1[1], box2[1])
|
|
|
+ inter_x_max = min(box1[2], box2[2])
|
|
|
+ inter_y_max = min(box1[3], box2[3])
|
|
|
+
|
|
|
+ inter_area = max(0, inter_x_max - inter_x_min) * max(0, inter_y_max - inter_y_min)
|
|
|
+
|
|
|
+ box1_area = (box1[2] - box1[0]) * (box1[3] - box1[1])
|
|
|
+ box2_area = (box2[2] - box2[0]) * (box2[3] - box2[1])
|
|
|
+
|
|
|
+ union_area = box1_area + box2_area - inter_area
|
|
|
+ iou = inter_area / union_area if union_area > 0 else 0
|
|
|
+
|
|
|
+ return iou
|
|
|
+
|
|
|
+
|
|
|
+def calculate_giou(box1, box2):
|
|
|
+ iou = calculate_iou(box1, box2)
|
|
|
+
|
|
|
+ # 计算最小外包围矩形
|
|
|
+ c_x_min = min(box1[0], box2[0])
|
|
|
+ c_y_min = min(box1[1], box2[1])
|
|
|
+ c_x_max = max(box1[2], box2[2])
|
|
|
+ c_y_max = max(box1[3], box2[3])
|
|
|
+
|
|
|
+ c_area = (c_x_max - c_x_min) * (c_y_max - c_y_min)
|
|
|
+ giou = iou - (
|
|
|
+ c_area - (box1[2] - box1[0]) * (box1[3] - box1[1]) - (box2[2] - box2[0]) * (box2[3] - box2[1])) / c_area
|
|
|
+
|
|
|
+ return giou
|
|
|
+
|
|
|
+
|
|
|
+def calculate_diou(box1, box2):
|
|
|
+ iou = calculate_iou(box1, box2)
|
|
|
+
|
|
|
+ # 计算中心点的距离
|
|
|
+ box1_center = [(box1[0] + box1[2]) / 2, (box1[1] + box1[3]) / 2]
|
|
|
+ box2_center = [(box2[0] + box2[2]) / 2, (box2[1] + box2[3]) / 2]
|
|
|
+ center_distance = np.sum(np.square(np.array(box1_center) - np.array(box2_center)))
|
|
|
+
|
|
|
+ # 计算最小外包围矩形的对角线距离
|
|
|
+ c_x_min = min(box1[0], box2[0])
|
|
|
+ c_y_min = min(box1[1], box2[1])
|
|
|
+ c_x_max = max(box1[2], box2[2])
|
|
|
+ c_y_max = max(box1[3], box2[3])
|
|
|
+ c_diag_distance = np.sum(np.square(np.array([c_x_max, c_y_max]) - np.array([c_x_min, c_y_min])))
|
|
|
+
|
|
|
+ diou = iou - center_distance / c_diag_distance
|
|
|
+
|
|
|
+ return diou
|
|
|
+
|
|
|
+
|
|
|
+def calculate_ciou(box1, box2):
|
|
|
+ diou = calculate_diou(box1, box2)
|
|
|
+
|
|
|
+ # 计算长宽比一致性
|
|
|
+ box1_w = box1[2] - box1[0]
|
|
|
+ box1_h = box1[3] - box1[1]
|
|
|
+ box2_w = box2[2] - box2[0]
|
|
|
+ box2_h = box2[3] - box2[1]
|
|
|
+
|
|
|
+ v = (4 / (np.pi ** 2)) * np.square(np.arctan(box1_w / box1_h) - np.arctan(box2_w / box2_h))
|
|
|
+ alpha = v / (1 - calculate_iou(box1, box2) + v)
|
|
|
+
|
|
|
+ ciou = diou - alpha * v
|
|
|
+
|
|
|
+ return ciou
|