|
@@ -0,0 +1,148 @@
|
|
|
+import cv2
|
|
|
+import numpy as np
|
|
|
+from mindx.sdk import Tensor
|
|
|
+from mindx.sdk import base
|
|
|
+
|
|
|
+
|
|
|
+class YOLOV5Inference:
|
|
|
+ def __init__(self, model_path, input_size=(640, 640), swap=(2, 0, 1),
|
|
|
+ score_thr=0.3, nms_thr=0.45, class_agnostic=True):
|
|
|
+ self.model_path = model_path
|
|
|
+ self.input_size = input_size
|
|
|
+ self.swap = swap
|
|
|
+ self.score_thr = score_thr
|
|
|
+ self.nms_thr = nms_thr
|
|
|
+ self.class_agnostic = class_agnostic
|
|
|
+
|
|
|
+ base.mx_init()
|
|
|
+ self.model = base.model(modelPath=self.model_path)
|
|
|
+ if self.model is None:
|
|
|
+ raise Exception("模型导入失败!请检查model_path。")
|
|
|
+
|
|
|
+ def input_processing(self, image_path):
|
|
|
+ img = cv2.imread(image_path)
|
|
|
+ if len(img.shape) == 3:
|
|
|
+ padded_img = np.ones((self.input_size[0], self.input_size[1], 3), dtype=np.uint8) * 114
|
|
|
+ else:
|
|
|
+ padded_img = np.ones(self.input_size, dtype=np.uint8) * 114
|
|
|
+
|
|
|
+ r = min(self.input_size[0] / img.shape[0], self.input_size[1] / img.shape[1])
|
|
|
+ resized_img = cv2.resize(
|
|
|
+ img,
|
|
|
+ (int(img.shape[1] * r), int(img.shape[0] * r)),
|
|
|
+ interpolation=cv2.INTER_LINEAR,
|
|
|
+ ).astype(np.uint8)
|
|
|
+ padded_img[: int(img.shape[0] * r), : int(img.shape[1] * r)] = resized_img
|
|
|
+
|
|
|
+ padded_img = padded_img.transpose(self.swap).copy()
|
|
|
+ padded_img = np.ascontiguousarray(padded_img, dtype=np.float32)
|
|
|
+ height, width, channels = img.shape
|
|
|
+ return padded_img, r, height, width, channels
|
|
|
+
|
|
|
+ def predict(self, image_path):
|
|
|
+ img, ratio, height, width, channels = self.input_processing(image_path)
|
|
|
+ input_tensors = img[None, :, :, :]
|
|
|
+ input_tensors = Tensor(input_tensors)
|
|
|
+
|
|
|
+ outputs = self.model.infer([input_tensors])[0]
|
|
|
+ outputs.to_host()
|
|
|
+ outputs = np.array(outputs)
|
|
|
+ dets = self.output_processing(outputs, ratio)
|
|
|
+ return dets
|
|
|
+
|
|
|
+ def output_processing(self, outputs, ratio):
|
|
|
+ outputs = outputs[0] # [1, N, 85] -> [N, 85]
|
|
|
+ boxes = outputs[:, 0:4]
|
|
|
+ obj_conf = outputs[:, 4]
|
|
|
+ class_scores = outputs[:, 5:]
|
|
|
+
|
|
|
+ scores = obj_conf[:, None] * class_scores
|
|
|
+ dets = multiclass_nms(boxes, scores, nms_thr=self.nms_thr, score_thr=self.score_thr,
|
|
|
+ class_agnostic=self.class_agnostic)
|
|
|
+
|
|
|
+ if dets is None or len(dets) == 0:
|
|
|
+ return np.zeros((0, 6))
|
|
|
+
|
|
|
+ # 恢复原图尺度
|
|
|
+ dets[:, :4] /= ratio
|
|
|
+ return dets
|
|
|
+
|
|
|
+
|
|
|
+def nms(boxes, scores, nms_thr):
|
|
|
+ x1 = boxes[:, 0]
|
|
|
+ y1 = boxes[:, 1]
|
|
|
+ x2 = boxes[:, 2]
|
|
|
+ y2 = boxes[:, 3]
|
|
|
+
|
|
|
+ areas = (x2 - x1 + 1) * (y2 - y1 + 1)
|
|
|
+ order = scores.argsort()[::-1]
|
|
|
+
|
|
|
+ keep = []
|
|
|
+ while order.size > 0:
|
|
|
+ i = order[0]
|
|
|
+ keep.append(i)
|
|
|
+ xx1 = np.maximum(x1[i], x1[order[1:]])
|
|
|
+ yy1 = np.maximum(y1[i], y1[order[1:]])
|
|
|
+ xx2 = np.minimum(x2[i], x2[order[1:]])
|
|
|
+ yy2 = np.minimum(y2[i], y2[order[1:]])
|
|
|
+
|
|
|
+ w = np.maximum(0.0, xx2 - xx1 + 1)
|
|
|
+ h = np.maximum(0.0, yy2 - yy1 + 1)
|
|
|
+ inter = w * h
|
|
|
+ ovr = inter / (areas[i] + areas[order[1:]] - inter)
|
|
|
+
|
|
|
+ inds = np.where(ovr <= nms_thr)[0]
|
|
|
+ order = order[inds + 1]
|
|
|
+
|
|
|
+ return keep
|
|
|
+
|
|
|
+
|
|
|
+def multiclass_nms_class_agnostic(boxes, scores, nms_thr, score_thr):
|
|
|
+ cls_inds = scores.argmax(1)
|
|
|
+ cls_scores = scores[np.arange(len(cls_inds)), cls_inds]
|
|
|
+ valid_mask = cls_scores > score_thr
|
|
|
+
|
|
|
+ if valid_mask.sum() == 0:
|
|
|
+ return None
|
|
|
+
|
|
|
+ valid_boxes = boxes[valid_mask]
|
|
|
+ valid_scores = cls_scores[valid_mask]
|
|
|
+ valid_cls_inds = cls_inds[valid_mask]
|
|
|
+ keep = nms(valid_boxes, valid_scores, nms_thr)
|
|
|
+
|
|
|
+ if not keep:
|
|
|
+ return None
|
|
|
+
|
|
|
+ dets = np.concatenate(
|
|
|
+ [valid_boxes[keep], valid_scores[keep, None], valid_cls_inds[keep, None]], axis=1
|
|
|
+ )
|
|
|
+ return dets
|
|
|
+
|
|
|
+
|
|
|
+def multiclass_nms_class_aware(boxes, scores, nms_thr, score_thr):
|
|
|
+ final_dets = []
|
|
|
+ num_classes = scores.shape[1]
|
|
|
+ for cls_ind in range(num_classes):
|
|
|
+ cls_scores = scores[:, cls_ind]
|
|
|
+ valid_mask = cls_scores > score_thr
|
|
|
+ if valid_mask.sum() == 0:
|
|
|
+ continue
|
|
|
+ valid_boxes = boxes[valid_mask]
|
|
|
+ valid_scores = cls_scores[valid_mask]
|
|
|
+ keep = nms(valid_boxes, valid_scores, nms_thr)
|
|
|
+ if not keep:
|
|
|
+ continue
|
|
|
+ cls_inds = np.ones((len(keep), 1)) * cls_ind
|
|
|
+ dets = np.concatenate([valid_boxes[keep], valid_scores[keep, None], cls_inds], axis=1)
|
|
|
+ final_dets.append(dets)
|
|
|
+
|
|
|
+ if not final_dets:
|
|
|
+ return None
|
|
|
+ return np.concatenate(final_dets, axis=0)
|
|
|
+
|
|
|
+
|
|
|
+def multiclass_nms(boxes, scores, nms_thr, score_thr, class_agnostic=True):
|
|
|
+ if class_agnostic:
|
|
|
+ return multiclass_nms_class_agnostic(boxes, scores, nms_thr, score_thr)
|
|
|
+ else:
|
|
|
+ return multiclass_nms_class_aware(boxes, scores, nms_thr, score_thr)
|