|
@@ -0,0 +1,209 @@
|
|
|
+"""
|
|
|
+针对图像分类模型的测试性能损失脚本,通过比较推理过程中CPU、GPU占用、推理时间来进行计算
|
|
|
+需要安装指定python库实现功能
|
|
|
+pip install psutil gputil pynvml
|
|
|
+"""
|
|
|
+import argparse
|
|
|
+import os
|
|
|
+
|
|
|
+import psutil
|
|
|
+import GPUtil
|
|
|
+import numpy as np
|
|
|
+import time
|
|
|
+from threading import Thread
|
|
|
+import onnxruntime as ort
|
|
|
+from PIL import Image
|
|
|
+
|
|
|
+
|
|
|
+# 定义监控函数
|
|
|
+class UsageMonitor:
|
|
|
+ def __init__(self, interval=0.5):
|
|
|
+ self.interval = interval
|
|
|
+ self.cpu_usage = []
|
|
|
+ self.gpu_usage = []
|
|
|
+ self.running = False
|
|
|
+
|
|
|
+ def start(self):
|
|
|
+ self.running = True
|
|
|
+ self.monitor_thread = Thread(target=self._monitor)
|
|
|
+ self.monitor_thread.start()
|
|
|
+
|
|
|
+ def _monitor(self):
|
|
|
+ while self.running:
|
|
|
+ # 记录 CPU 使用率
|
|
|
+ self.cpu_usage.append(psutil.cpu_percent(interval=None))
|
|
|
+
|
|
|
+ # 记录 GPU 使用率
|
|
|
+ gpus = GPUtil.getGPUs()
|
|
|
+ if gpus:
|
|
|
+ self.gpu_usage.append(gpus[0].load * 100) # 获取第一个 GPU 的使用率
|
|
|
+ else:
|
|
|
+ self.gpu_usage.append(0) # 若没有 GPU 则记为 0
|
|
|
+
|
|
|
+ time.sleep(self.interval)
|
|
|
+
|
|
|
+ def stop(self):
|
|
|
+ self.running = False
|
|
|
+ self.monitor_thread.join()
|
|
|
+
|
|
|
+ def get_average_usage(self):
|
|
|
+ avg_cpu_usage = np.mean(self.cpu_usage)
|
|
|
+ avg_gpu_usage = np.mean(self.gpu_usage)
|
|
|
+ return avg_cpu_usage, avg_gpu_usage
|
|
|
+
|
|
|
+
|
|
|
+def process_image(image_path, transpose=True):
|
|
|
+ """
|
|
|
+ 图片处理
|
|
|
+ :param image_path: 图片路径
|
|
|
+ :param transpose: 是否进行维度转换,在使用pytorch框架训练出来的权重需要进行维度转换,tensorflow、keras框架不需要
|
|
|
+ :return:
|
|
|
+ """
|
|
|
+ # 打开图像并转换为RGB
|
|
|
+ image = Image.open(image_path).convert("RGB")
|
|
|
+
|
|
|
+ # 调整图像大小
|
|
|
+ image = image.resize((224, 224))
|
|
|
+
|
|
|
+ # 转换为numpy数组并归一化
|
|
|
+ image_array = np.array(image) / 255.0 # 将像素值缩放到[0, 1]
|
|
|
+
|
|
|
+ # 进行标准化
|
|
|
+ mean = np.array([0.485, 0.456, 0.406])
|
|
|
+ std = np.array([0.229, 0.224, 0.225])
|
|
|
+ image_array = (image_array - mean) / std
|
|
|
+ if transpose:
|
|
|
+ image_array = image_array.transpose((2, 0, 1)).copy()
|
|
|
+
|
|
|
+ return image_array.astype(np.float32)
|
|
|
+
|
|
|
+
|
|
|
+def batch_predict_images(session, image_dir, target_class, batch_size=10, pytorch=True):
|
|
|
+ """
|
|
|
+ 对指定图片文件夹图片进行批量检测
|
|
|
+ :param session: onnx runtime session
|
|
|
+ :param image_dir: 待推理的图像文件夹
|
|
|
+ :param target_class: 目标分类
|
|
|
+ :param batch_size: 每批图片数量, 默认为10
|
|
|
+ :param pytorch: 模型是否使用pytorch框架训练出的权重导出的onnx文件,默认为True
|
|
|
+ :return: 检测结果
|
|
|
+ """
|
|
|
+ image_files = [f for f in os.listdir(image_dir) if f.lower().endswith(('.png', '.jpg', '.jpeg'))]
|
|
|
+ results = {}
|
|
|
+ input_name = session.get_inputs()[0].name
|
|
|
+ correct_predictions = 0
|
|
|
+ total_predictions = 0
|
|
|
+
|
|
|
+ for i in range(0, len(image_files), batch_size):
|
|
|
+ batch_files = image_files[i:i + batch_size]
|
|
|
+ batch_images = []
|
|
|
+
|
|
|
+ for image_file in batch_files:
|
|
|
+ image_path = os.path.join(image_dir, image_file)
|
|
|
+ image = process_image(image_path, pytorch)
|
|
|
+ batch_images.append(image)
|
|
|
+
|
|
|
+ # 将批次图片堆叠成 (batch_size, 3, 224, 224) 维度
|
|
|
+ batch_images = np.stack(batch_images)
|
|
|
+
|
|
|
+ # 执行预测
|
|
|
+ outputs = session.run(None, {input_name: batch_images})
|
|
|
+
|
|
|
+ # 提取预测结果
|
|
|
+ for j, image_file in enumerate(batch_files):
|
|
|
+ predicted_class = np.argmax(outputs[0][j]) # 假设输出是每类的概率
|
|
|
+ results[image_file] = predicted_class
|
|
|
+ total_predictions += 1
|
|
|
+
|
|
|
+ # 比较预测结果与目标分类
|
|
|
+ if predicted_class == target_class:
|
|
|
+ correct_predictions += 1
|
|
|
+
|
|
|
+ # 计算准确率
|
|
|
+ accuracy = correct_predictions / total_predictions if total_predictions > 0 else 0
|
|
|
+ return accuracy
|
|
|
+
|
|
|
+
|
|
|
+# 模型推理函数
|
|
|
+def model_inference(model_filename, val_dataset_dir):
|
|
|
+ """
|
|
|
+ 模型推理验证集目录下所有图片
|
|
|
+ :param model_filename: 模型文件
|
|
|
+ :param val_dataset_dir: 验证集图片目录
|
|
|
+ :return: 验证集推理准确率
|
|
|
+ """
|
|
|
+ # 以下使用GPU进行推理出现问题,需要较新的CUDA版本,默认使用CPU进行推理
|
|
|
+ # if ort.get_available_providers():
|
|
|
+ # session = ort.InferenceSession(model_filename, providers=['CUDAExecutionProvider'])
|
|
|
+ # else:
|
|
|
+ # session = ort.InferenceSession(model_filename)
|
|
|
+ session = ort.InferenceSession(model_filename)
|
|
|
+ accuracy = 0
|
|
|
+ class_num = 0
|
|
|
+ index = 0
|
|
|
+ for class_dir in os.listdir(val_dataset_dir):
|
|
|
+ class_path = os.path.join(val_dataset_dir, class_dir)
|
|
|
+ # 检查是否为目录
|
|
|
+ if not os.path.isdir(class_path):
|
|
|
+ continue
|
|
|
+ class_num += 1
|
|
|
+ is_pytorch = False if "keras" in model_filename or "tensorflow" in model_filename else True
|
|
|
+ batch_result = batch_predict_images(session, class_path, index, pytorch=is_pytorch)
|
|
|
+ accuracy += batch_result
|
|
|
+ index += 1
|
|
|
+ print(f"class_num: {class_num}, index: {index}")
|
|
|
+ return accuracy * 1.0 / class_num
|
|
|
+
|
|
|
+
|
|
|
+if __name__ == '__main__':
|
|
|
+ parser = argparse.ArgumentParser(description='模型推理性能验证脚本')
|
|
|
+ parser.add_argument('--origin_model_file', default=None, type=str, help='待测试原始模型的onnx文件')
|
|
|
+ parser.add_argument('--watermark_model_file', default=None, type=str, help='待测试水印模型的onnx文件')
|
|
|
+ parser.add_argument('--val_dataset_dir', default=None, type=str, help='验证集目录')
|
|
|
+
|
|
|
+ args, _ = parser.parse_known_args()
|
|
|
+ if args.origin_model_file is None:
|
|
|
+ raise Exception("待测试模型的onnx文件不可为空")
|
|
|
+ if args.val_dataset_dir is None:
|
|
|
+ raise Exception("验证集目录不可为空")
|
|
|
+
|
|
|
+ monitor = UsageMonitor(interval=0.5) # 每隔 0.5 秒采样一次
|
|
|
+ monitor.start()
|
|
|
+ # 记录推理开始时间
|
|
|
+ start_time = time.time()
|
|
|
+ # 进行模型推理
|
|
|
+ accuracy = model_inference(args.origin_model_file, args.val_dataset_dir)
|
|
|
+ # 记录推理结束时间
|
|
|
+ end_time = time.time()
|
|
|
+ monitor.stop()
|
|
|
+ # 输出平均 CPU 和 GPU 使用率
|
|
|
+ avg_cpu, avg_gpu = monitor.get_average_usage()
|
|
|
+ print("原始模型推理性能:")
|
|
|
+ print(f"平均 CPU 使用率:{avg_cpu:.2f}%")
|
|
|
+ print(f"平均 GPU 使用率:{avg_gpu:.2f}%")
|
|
|
+ print(f"模型推理时间: {end_time - start_time:.2f} 秒")
|
|
|
+ print(f"准确率: {accuracy * 100:.2f}%")
|
|
|
+
|
|
|
+ if args.watermark_model_file: # 加入存在比对模型,进行再次推理,然后统计性能指标
|
|
|
+ time.sleep(20)
|
|
|
+ monitor2 = UsageMonitor(interval=0.5) # 每隔 0.5 秒采样一次
|
|
|
+ monitor2.start()
|
|
|
+ # 记录推理开始时间
|
|
|
+ start_time2 = time.time()
|
|
|
+ # 进行模型推理
|
|
|
+ accuracy2 = model_inference(args.watermark_model_file, args.val_dataset_dir)
|
|
|
+ # 记录推理结束时间
|
|
|
+ end_time2 = time.time()
|
|
|
+ monitor2.stop()
|
|
|
+ # 输出平均 CPU 和 GPU 使用率
|
|
|
+ avg_cpu2, avg_gpu2 = monitor2.get_average_usage()
|
|
|
+ print("水印模型推理性能:")
|
|
|
+ print(f"平均 CPU 使用率:{avg_cpu2:.2f}%")
|
|
|
+ print(f"平均 GPU 使用率:{avg_gpu2:.2f}%")
|
|
|
+ print(f"模型推理时间: {end_time2 - start_time2:.2f} 秒")
|
|
|
+ print(f"准确率: {accuracy2 * 100:.2f}%")
|
|
|
+
|
|
|
+ print("------------------性能指标如下-------------------------")
|
|
|
+ print(f"嵌入后模型推理准确率下降值:{(accuracy - accuracy2) * 100:.2f}%")
|
|
|
+ print(f"算力资源消耗增加值:{(avg_cpu2 - avg_cpu):.2f}%")
|
|
|
+ print(f"运行效率降低值: {((end_time2 - start_time2) - (end_time - start_time)) * 100 / (end_time - start_time):.2f} %")
|