|
@@ -2,12 +2,9 @@
|
|
|
yolox基于pytorch框架的黑盒水印处理验证流程
|
|
|
"""
|
|
|
import os
|
|
|
-
|
|
|
import cv2
|
|
|
-import numpy as np
|
|
|
-import onnxruntime
|
|
|
+from watermark_verify.inference.yolox_inference import YOLOXInference
|
|
|
from watermark_verify.process.general_process_define import BlackBoxWatermarkProcessDefine
|
|
|
-
|
|
|
from watermark_verify.tools import parse_qrcode_label_file
|
|
|
from watermark_verify.tools.evaluate_tool import calculate_ciou
|
|
|
|
|
@@ -27,7 +24,7 @@ class DetectionProcess(BlackBoxWatermarkProcessDefine):
|
|
|
for cls, images in cls_image_mapping.items():
|
|
|
for image in images:
|
|
|
image_path = os.path.join(self.trigger_dir, image)
|
|
|
- detect_result = self.detect_secret_label(image_path, self.model_filename, self.qrcode_positions_file, (640, 640))
|
|
|
+ detect_result = self.detect_secret_label(image_path, self.qrcode_positions_file, (640, 640))
|
|
|
if detect_result:
|
|
|
accessed_cls.add(cls)
|
|
|
break
|
|
@@ -37,44 +34,16 @@ class DetectionProcess(BlackBoxWatermarkProcessDefine):
|
|
|
verify_result = self.verify_label() # 模型标签检测通过,进行标签验证
|
|
|
return verify_result
|
|
|
|
|
|
-
|
|
|
- def preprocess_image(self, image_path, input_size, swap=(2, 0, 1)):
|
|
|
- """
|
|
|
- 对输入图片进行预处理
|
|
|
- :param swap: 维度变换元组,默认按照(2,0,1)进行变换
|
|
|
- :param image_path: 图片路径
|
|
|
- :param input_size: 模型输入大小
|
|
|
- :return: 图片经过处理完成的ndarray
|
|
|
- """
|
|
|
- img = cv2.imread(image_path)
|
|
|
- if len(img.shape) == 3:
|
|
|
- padded_img = np.ones((input_size[0], input_size[1], 3), dtype=np.uint8) * 114
|
|
|
- else:
|
|
|
- padded_img = np.ones(input_size, dtype=np.uint8) * 114
|
|
|
-
|
|
|
- r = min(input_size[0] / img.shape[0], input_size[1] / img.shape[1])
|
|
|
- resized_img = cv2.resize(
|
|
|
- img,
|
|
|
- (int(img.shape[1] * r), int(img.shape[0] * r)),
|
|
|
- interpolation=cv2.INTER_LINEAR,
|
|
|
- ).astype(np.uint8)
|
|
|
- padded_img[: int(img.shape[0] * r), : int(img.shape[1] * r)] = resized_img
|
|
|
-
|
|
|
- padded_img = padded_img.transpose(swap).copy()
|
|
|
- padded_img = np.ascontiguousarray(padded_img, dtype=np.float32)
|
|
|
- height, width, channels = img.shape
|
|
|
- return padded_img, r, height, width, channels
|
|
|
-
|
|
|
- def detect_secret_label(self, image_path, model_file, watermark_txt, input_shape) -> bool:
|
|
|
+ def detect_secret_label(self, image_path, watermark_txt, input_shape) -> bool:
|
|
|
"""
|
|
|
对模型使用触发集进行检查,判断是否存在黑盒模型水印,如果对嵌入水印的图片样本正确率高于阈值,证明模型存在黑盒水印
|
|
|
:param image_path: 输入图像路径
|
|
|
- :param model_file: 模型文件路径
|
|
|
:param watermark_txt: 水印标签文件路径
|
|
|
:param input_shape: 模型输入图像大小,tuple
|
|
|
:return: 检测结果
|
|
|
"""
|
|
|
- img, ratio, height, width, channels = self.preprocess_image(image_path, input_shape)
|
|
|
+ img = cv2.imread(image_path)
|
|
|
+ height, width, channels = img.shape
|
|
|
x_center, y_center, w, h, cls = parse_qrcode_label_file.load_watermark_info(watermark_txt, image_path)
|
|
|
# 计算绝对坐标
|
|
|
x1 = (x_center - w / 2) * width
|
|
@@ -85,11 +54,8 @@ class DetectionProcess(BlackBoxWatermarkProcessDefine):
|
|
|
if len(watermark_box) == 0:
|
|
|
return False
|
|
|
|
|
|
- session = onnxruntime.InferenceSession(model_file)
|
|
|
+ dets = YOLOXInference(self.model_filename,input_size=input_shape).predict(image_path)
|
|
|
|
|
|
- ort_inputs = {session.get_inputs()[0].name: img[None, :, :, :]}
|
|
|
- output = session.run(None, ort_inputs)
|
|
|
- dets = postprocess(output[0], input_shape, ratio)[0]
|
|
|
if dets is not None:
|
|
|
detect_result = detect_watermark(dets, watermark_box)
|
|
|
return detect_result
|
|
@@ -97,123 +63,6 @@ class DetectionProcess(BlackBoxWatermarkProcessDefine):
|
|
|
return False
|
|
|
|
|
|
|
|
|
-def postprocess(outputs, img_size, ratio, p6=False):
|
|
|
- grids = []
|
|
|
- expanded_strides = []
|
|
|
- outputs = outputs[0]
|
|
|
- strides = [8, 16, 32] if not p6 else [8, 16, 32, 64]
|
|
|
-
|
|
|
- hsizes = [img_size[0] // stride for stride in strides]
|
|
|
- wsizes = [img_size[1] // stride for stride in strides]
|
|
|
-
|
|
|
- for hsize, wsize, stride in zip(hsizes, wsizes, strides):
|
|
|
- xv, yv = np.meshgrid(np.arange(wsize), np.arange(hsize))
|
|
|
- grid = np.stack((xv, yv), 2).reshape(1, -1, 2)
|
|
|
- grids.append(grid)
|
|
|
- shape = grid.shape[:2]
|
|
|
- expanded_strides.append(np.full((*shape, 1), stride))
|
|
|
-
|
|
|
- grids = np.concatenate(grids, 1)
|
|
|
- expanded_strides = np.concatenate(expanded_strides, 1)
|
|
|
- outputs[..., :2] = (outputs[..., :2] + grids) * expanded_strides
|
|
|
- outputs[..., 2:4] = np.exp(outputs[..., 2:4]) * expanded_strides
|
|
|
-
|
|
|
- boxes = outputs[:, :4]
|
|
|
- scores = outputs[:, 4:5] * outputs[:, 5:]
|
|
|
-
|
|
|
- boxes_xyxy = np.ones_like(boxes)
|
|
|
- boxes_xyxy[:, 0] = boxes[:, 0] - boxes[:, 2] / 2.
|
|
|
- boxes_xyxy[:, 1] = boxes[:, 1] - boxes[:, 3] / 2.
|
|
|
- boxes_xyxy[:, 2] = boxes[:, 0] + boxes[:, 2] / 2.
|
|
|
- boxes_xyxy[:, 3] = boxes[:, 1] + boxes[:, 3] / 2.
|
|
|
- boxes_xyxy /= ratio
|
|
|
- dets = multiclass_nms(boxes_xyxy, scores, nms_thr=0.45, score_thr=0.1)
|
|
|
-
|
|
|
- return dets
|
|
|
-
|
|
|
-
|
|
|
-def nms(boxes, scores, nms_thr):
|
|
|
- """Single class NMS implemented in Numpy."""
|
|
|
- x1 = boxes[:, 0]
|
|
|
- y1 = boxes[:, 1]
|
|
|
- x2 = boxes[:, 2]
|
|
|
- y2 = boxes[:, 3]
|
|
|
-
|
|
|
- areas = (x2 - x1 + 1) * (y2 - y1 + 1)
|
|
|
- order = scores.argsort()[::-1]
|
|
|
-
|
|
|
- keep = []
|
|
|
- while order.size > 0:
|
|
|
- i = order[0]
|
|
|
- keep.append(i)
|
|
|
- xx1 = np.maximum(x1[i], x1[order[1:]])
|
|
|
- yy1 = np.maximum(y1[i], y1[order[1:]])
|
|
|
- xx2 = np.minimum(x2[i], x2[order[1:]])
|
|
|
- yy2 = np.minimum(y2[i], y2[order[1:]])
|
|
|
-
|
|
|
- w = np.maximum(0.0, xx2 - xx1 + 1)
|
|
|
- h = np.maximum(0.0, yy2 - yy1 + 1)
|
|
|
- inter = w * h
|
|
|
- ovr = inter / (areas[i] + areas[order[1:]] - inter)
|
|
|
-
|
|
|
- inds = np.where(ovr <= nms_thr)[0]
|
|
|
- order = order[inds + 1]
|
|
|
-
|
|
|
- return keep
|
|
|
-
|
|
|
-
|
|
|
-def multiclass_nms_class_agnostic(boxes, scores, nms_thr, score_thr):
|
|
|
- """Multiclass NMS implemented in Numpy. Class-agnostic version."""
|
|
|
- cls_inds = scores.argmax(1)
|
|
|
- cls_scores = scores[np.arange(len(cls_inds)), cls_inds]
|
|
|
-
|
|
|
- valid_score_mask = cls_scores > score_thr
|
|
|
- if valid_score_mask.sum() == 0:
|
|
|
- return None
|
|
|
- valid_scores = cls_scores[valid_score_mask]
|
|
|
- valid_boxes = boxes[valid_score_mask]
|
|
|
- valid_cls_inds = cls_inds[valid_score_mask]
|
|
|
- keep = nms(valid_boxes, valid_scores, nms_thr)
|
|
|
- if keep:
|
|
|
- dets = np.concatenate(
|
|
|
- [valid_boxes[keep], valid_scores[keep, None], valid_cls_inds[keep, None]], 1
|
|
|
- )
|
|
|
- return dets
|
|
|
-
|
|
|
-
|
|
|
-def multiclass_nms_class_aware(boxes, scores, nms_thr, score_thr):
|
|
|
- """Multiclass NMS implemented in Numpy. Class-aware version."""
|
|
|
- final_dets = []
|
|
|
- num_classes = scores.shape[1]
|
|
|
- for cls_ind in range(num_classes):
|
|
|
- cls_scores = scores[:, cls_ind]
|
|
|
- valid_score_mask = cls_scores > score_thr
|
|
|
- if valid_score_mask.sum() == 0:
|
|
|
- continue
|
|
|
- else:
|
|
|
- valid_scores = cls_scores[valid_score_mask]
|
|
|
- valid_boxes = boxes[valid_score_mask]
|
|
|
- keep = nms(valid_boxes, valid_scores, nms_thr)
|
|
|
- if len(keep) > 0:
|
|
|
- cls_inds = np.ones((len(keep), 1)) * cls_ind
|
|
|
- dets = np.concatenate(
|
|
|
- [valid_boxes[keep], valid_scores[keep, None], cls_inds], 1
|
|
|
- )
|
|
|
- final_dets.append(dets)
|
|
|
- if len(final_dets) == 0:
|
|
|
- return None
|
|
|
- return np.concatenate(final_dets, 0)
|
|
|
-
|
|
|
-
|
|
|
-def multiclass_nms(boxes, scores, nms_thr, score_thr, class_agnostic=True):
|
|
|
- """Multiclass NMS implemented in Numpy"""
|
|
|
- if class_agnostic:
|
|
|
- nms_method = multiclass_nms_class_agnostic
|
|
|
- else:
|
|
|
- nms_method = multiclass_nms_class_aware
|
|
|
- return nms_method(boxes, scores, nms_thr, score_thr)
|
|
|
-
|
|
|
-
|
|
|
def detect_watermark(dets, watermark_box, threshold=0.5):
|
|
|
if dets.size == 0: # 检查是否为空
|
|
|
return False
|
|
@@ -225,5 +74,3 @@ def detect_watermark(dets, watermark_box, threshold=0.5):
|
|
|
if ciou > threshold:
|
|
|
return True
|
|
|
return False
|
|
|
-
|
|
|
-
|