|
@@ -66,7 +66,6 @@ class ModelWatermarkProcessor(BlackBoxWatermarkProcessDefine):
|
|
|
return False
|
|
|
# 使用onnx进行推理
|
|
|
results = FasterRCNNInference(self.model_filename).predict(image_path)
|
|
|
-
|
|
|
# 检测模型是否存在黑盒水印
|
|
|
if results is not None:
|
|
|
detect_result = detect_watermark(results, watermark_box)
|
|
@@ -100,8 +99,8 @@ def detect_watermark(results, watermark_box, threshold=0.5):
|
|
|
# 解析输出结果
|
|
|
if len(results[0]) == 0:
|
|
|
return False
|
|
|
- top_label = np.array(results[0][:, 4], dtype='int32')
|
|
|
- top_conf = results[0][:, 5]
|
|
|
+ top_label = np.array(results[0][:, 5], dtype='int32')
|
|
|
+ top_conf = results[0][:, 4]
|
|
|
top_boxes = results[0][:, :4]
|
|
|
for box, score, cls in zip(top_boxes, top_conf, top_label):
|
|
|
wm_box_coords = watermark_box[:4]
|