import cv2 import numpy as np from mindx.sdk import Tensor from mindx.sdk import base class YOLOV5Inference: def __init__(self, model_path, input_size=(640, 640), swap=(2, 0, 1), score_thr=0.3, nms_thr=0.45, class_agnostic=True): self.model_path = model_path self.input_size = input_size self.swap = swap self.score_thr = score_thr self.nms_thr = nms_thr self.class_agnostic = class_agnostic base.mx_init() self.model = base.model(modelPath=self.model_path) if self.model is None: raise Exception("模型导入失败!请检查model_path。") def input_processing(self, image_path): img = cv2.imread(image_path) if len(img.shape) == 3: padded_img = np.ones((self.input_size[0], self.input_size[1], 3), dtype=np.uint8) * 114 else: padded_img = np.ones(self.input_size, dtype=np.uint8) * 114 r = min(self.input_size[0] / img.shape[0], self.input_size[1] / img.shape[1]) resized_img = cv2.resize( img, (int(img.shape[1] * r), int(img.shape[0] * r)), interpolation=cv2.INTER_LINEAR, ).astype(np.uint8) padded_img[: int(img.shape[0] * r), : int(img.shape[1] * r)] = resized_img padded_img = padded_img.transpose(self.swap).copy() padded_img = np.ascontiguousarray(padded_img, dtype=np.float32) height, width, channels = img.shape return padded_img, r, height, width, channels def predict(self, image_path): img, ratio, height, width, channels = self.input_processing(image_path) input_tensors = img[None, :, :, :] input_tensors = Tensor(input_tensors) outputs = self.model.infer([input_tensors])[0] outputs.to_host() outputs = np.array(outputs) dets = self.output_processing(outputs, ratio) return dets def output_processing(self, outputs, ratio): outputs = outputs[0] # [1, N, 85] -> [N, 85] boxes = outputs[:, 0:4] obj_conf = outputs[:, 4] class_scores = outputs[:, 5:] scores = obj_conf[:, None] * class_scores dets = multiclass_nms(boxes, scores, nms_thr=self.nms_thr, score_thr=self.score_thr, class_agnostic=self.class_agnostic) if dets is None or len(dets) == 0: return np.zeros((0, 6)) # 恢复原图尺度 dets[:, :4] /= ratio return dets def nms(boxes, scores, nms_thr): x1 = boxes[:, 0] y1 = boxes[:, 1] x2 = boxes[:, 2] y2 = boxes[:, 3] areas = (x2 - x1 + 1) * (y2 - y1 + 1) order = scores.argsort()[::-1] keep = [] while order.size > 0: i = order[0] keep.append(i) xx1 = np.maximum(x1[i], x1[order[1:]]) yy1 = np.maximum(y1[i], y1[order[1:]]) xx2 = np.minimum(x2[i], x2[order[1:]]) yy2 = np.minimum(y2[i], y2[order[1:]]) w = np.maximum(0.0, xx2 - xx1 + 1) h = np.maximum(0.0, yy2 - yy1 + 1) inter = w * h ovr = inter / (areas[i] + areas[order[1:]] - inter) inds = np.where(ovr <= nms_thr)[0] order = order[inds + 1] return keep def multiclass_nms_class_agnostic(boxes, scores, nms_thr, score_thr): cls_inds = scores.argmax(1) cls_scores = scores[np.arange(len(cls_inds)), cls_inds] valid_mask = cls_scores > score_thr if valid_mask.sum() == 0: return None valid_boxes = boxes[valid_mask] valid_scores = cls_scores[valid_mask] valid_cls_inds = cls_inds[valid_mask] keep = nms(valid_boxes, valid_scores, nms_thr) if not keep: return None dets = np.concatenate( [valid_boxes[keep], valid_scores[keep, None], valid_cls_inds[keep, None]], axis=1 ) return dets def multiclass_nms_class_aware(boxes, scores, nms_thr, score_thr): final_dets = [] num_classes = scores.shape[1] for cls_ind in range(num_classes): cls_scores = scores[:, cls_ind] valid_mask = cls_scores > score_thr if valid_mask.sum() == 0: continue valid_boxes = boxes[valid_mask] valid_scores = cls_scores[valid_mask] keep = nms(valid_boxes, valid_scores, nms_thr) if not keep: continue cls_inds = np.ones((len(keep), 1)) * cls_ind dets = np.concatenate([valid_boxes[keep], valid_scores[keep, None], cls_inds], axis=1) final_dets.append(dets) if not final_dets: return None return np.concatenate(final_dets, axis=0) def multiclass_nms(boxes, scores, nms_thr, score_thr, class_agnostic=True): if class_agnostic: return multiclass_nms_class_agnostic(boxes, scores, nms_thr, score_thr) else: return multiclass_nms_class_aware(boxes, scores, nms_thr, score_thr)