""" 定义yolox推理流程 """ import cv2 import numpy as np import onnxruntime as ort class YOLOV5Inference: def __init__(self, model_path, input_size=(640, 640), swap=(2, 0, 1)): """ 初始化YOLOX模型推理流程 :param model_path: 图像分类模型onnx文件路径 :param input_size: 模型输入大小 :param swap: 变换方式,pytorch需要进行轴变换(默认参数),tensorflow无需进行轴变换 """ self.model_path = model_path self.input_size = input_size self.swap = swap def input_processing(self, image_path): """ 对输入图片进行预处理 :param image_path: 图片路径 :return: 图片经过处理完成的ndarray """ img = cv2.imread(image_path) if len(img.shape) == 3: padded_img = np.ones((self.input_size[0], self.input_size[1], 3), dtype=np.uint8) * 114 else: padded_img = np.ones(self.input_size, dtype=np.uint8) * 114 r = min(self.input_size[0] / img.shape[0], self.input_size[1] / img.shape[1]) resized_img = cv2.resize( img, (int(img.shape[1] * r), int(img.shape[0] * r)), interpolation=cv2.INTER_LINEAR, ).astype(np.uint8) padded_img[: int(img.shape[0] * r), : int(img.shape[1] * r)] = resized_img padded_img = padded_img.transpose(self.swap).copy() padded_img = np.ascontiguousarray(padded_img, dtype=np.float32) height, width, channels = img.shape return padded_img, r, height, width, channels def predict(self, image_path): """ 对单张图片进行推理 :param image_path: 图片路径 :return: 推理结果 """ img, ratio, height, width, channels = self.input_processing(image_path) session = ort.InferenceSession(self.model_path) ort_inputs = {session.get_inputs()[0].name: img[None, :, :, :]} output = session.run(None, ort_inputs) output = self.output_processing(output[0], ratio) return output def output_processing(self, outputs, ratio): """ YOLOv5 的输出处理流程 :param outputs: 模型输出 (1, 25200, 85) :param ratio: 预处理时的缩放比例 """ outputs = outputs[0] boxes = outputs[:, :4] obj_conf = outputs[:, 4:5] class_conf = outputs[:, 5:] scores = obj_conf * class_conf # xywh to xyxy boxes_xyxy = np.zeros_like(boxes) boxes_xyxy[:, 0] = boxes[:, 0] - boxes[:, 2] / 2 # x1 boxes_xyxy[:, 1] = boxes[:, 1] - boxes[:, 3] / 2 # y1 boxes_xyxy[:, 2] = boxes[:, 0] + boxes[:, 2] / 2 # x2 boxes_xyxy[:, 3] = boxes[:, 1] + boxes[:, 3] / 2 # y2 # 还原原图坐标 boxes_xyxy /= ratio # NMS dets = multiclass_nms(boxes_xyxy, scores, nms_thr=0.45, score_thr=0.25) return dets def nms(boxes, scores, nms_thr): """Single class NMS implemented in Numpy.""" x1 = boxes[:, 0] y1 = boxes[:, 1] x2 = boxes[:, 2] y2 = boxes[:, 3] areas = (x2 - x1 + 1) * (y2 - y1 + 1) order = scores.argsort()[::-1] keep = [] while order.size > 0: i = order[0] keep.append(i) xx1 = np.maximum(x1[i], x1[order[1:]]) yy1 = np.maximum(y1[i], y1[order[1:]]) xx2 = np.minimum(x2[i], x2[order[1:]]) yy2 = np.minimum(y2[i], y2[order[1:]]) w = np.maximum(0.0, xx2 - xx1 + 1) h = np.maximum(0.0, yy2 - yy1 + 1) inter = w * h ovr = inter / (areas[i] + areas[order[1:]] - inter) inds = np.where(ovr <= nms_thr)[0] order = order[inds + 1] return keep def multiclass_nms_class_agnostic(boxes, scores, nms_thr, score_thr): """Multiclass NMS implemented in Numpy. Class-agnostic version.""" cls_inds = scores.argmax(1) cls_scores = scores[np.arange(len(cls_inds)), cls_inds] valid_score_mask = cls_scores > score_thr if valid_score_mask.sum() == 0: return None valid_scores = cls_scores[valid_score_mask] valid_boxes = boxes[valid_score_mask] valid_cls_inds = cls_inds[valid_score_mask] keep = nms(valid_boxes, valid_scores, nms_thr) if keep: dets = np.concatenate( [valid_boxes[keep], valid_scores[keep, None], valid_cls_inds[keep, None]], 1 ) return dets def multiclass_nms_class_aware(boxes, scores, nms_thr, score_thr): """Multiclass NMS implemented in Numpy. Class-aware version.""" final_dets = [] num_classes = scores.shape[1] for cls_ind in range(num_classes): cls_scores = scores[:, cls_ind] valid_score_mask = cls_scores > score_thr if valid_score_mask.sum() == 0: continue else: valid_scores = cls_scores[valid_score_mask] valid_boxes = boxes[valid_score_mask] keep = nms(valid_boxes, valid_scores, nms_thr) if len(keep) > 0: cls_inds = np.ones((len(keep), 1)) * cls_ind dets = np.concatenate( [valid_boxes[keep], valid_scores[keep, None], cls_inds], 1 ) final_dets.append(dets) if len(final_dets) == 0: return None return np.concatenate(final_dets, 0) def multiclass_nms(boxes, scores, nms_thr, score_thr, class_agnostic=True): """Multiclass NMS implemented in Numpy""" if class_agnostic: nms_method = multiclass_nms_class_agnostic else: nms_method = multiclass_nms_class_aware return nms_method(boxes, scores, nms_thr, score_thr)