""" yolox基于pytorch框架的黑盒水印处理验证流程 """ import os import cv2 import numpy as np import onnxruntime from watermark_verify.process.general_process_define import BlackBoxWatermarkProcessDefine from watermark_verify.tools import parse_qrcode_label_file from watermark_verify.tools.evaluate_tool import calculate_ciou class ClassificationProcess(BlackBoxWatermarkProcessDefine): def __init__(self, model_filename): super(ClassificationProcess, self).__init__(model_filename) def process(self) -> bool: """ 根据流程定义进行处理,并返回模型标签验证结果 :return: 模型标签验证结果 """ # 获取权重文件,使用触发集进行模型推理, 将推理结果与触发集预先二维码保存位置进行比对,在误差范围内则进行下一步,否则返回False cls_image_mapping = parse_qrcode_label_file.parse_labels(self.qrcode_positions_file) accessed_cls = set() for cls, images in cls_image_mapping.items(): for image in images: image_path = os.path.join(self.trigger_dir, image) detect_result = self.detect_secret_label(image_path, self.model_filename, self.qrcode_positions_file, (640, 640)) if detect_result: accessed_cls.add(cls) break if not accessed_cls == set(cls_image_mapping.keys()): # 所有的分类都检测出模型水印,模型水印检测结果为True return False verify_result = self.verify_label() # 模型标签检测通过,进行标签验证 return verify_result def preprocess_image(self, image_path, input_size, swap=(2, 0, 1)): """ 对输入图片进行预处理 :param swap: 维度变换元组,默认按照(2,0,1)进行变换 :param image_path: 图片路径 :param input_size: 模型输入大小 :return: 图片经过处理完成的ndarray """ img = cv2.imread(image_path) if len(img.shape) == 3: padded_img = np.ones((input_size[0], input_size[1], 3), dtype=np.uint8) * 114 else: padded_img = np.ones(input_size, dtype=np.uint8) * 114 r = min(input_size[0] / img.shape[0], input_size[1] / img.shape[1]) resized_img = cv2.resize( img, (int(img.shape[1] * r), int(img.shape[0] * r)), interpolation=cv2.INTER_LINEAR, ).astype(np.uint8) padded_img[: int(img.shape[0] * r), : int(img.shape[1] * r)] = resized_img padded_img = padded_img.transpose(swap).copy() padded_img = np.ascontiguousarray(padded_img, dtype=np.float32) height, width, channels = img.shape return padded_img, r, height, width, channels def detect_secret_label(self, image_path, model_file, watermark_txt, input_shape) -> bool: """ 对模型使用触发集进行检查,判断是否存在黑盒模型水印,如果对嵌入水印的图片样本正确率高于阈值,证明模型存在黑盒水印 :param image_path: 输入图像路径 :param model_file: 模型文件路径 :param watermark_txt: 水印标签文件路径 :param input_shape: 模型输入图像大小,tuple :return: 检测结果 """ img, ratio, height, width, channels = self.preprocess_image(image_path, input_shape) x_center, y_center, w, h, cls = parse_qrcode_label_file.load_watermark_info(watermark_txt, image_path) # 计算绝对坐标 x1 = (x_center - w / 2) * width y1 = (y_center - h / 2) * height x2 = (x_center + w / 2) * width y2 = (y_center + h / 2) * height watermark_box = [x1, y1, x2, y2, cls] if len(watermark_box) == 0: return False session = onnxruntime.InferenceSession(model_file) ort_inputs = {session.get_inputs()[0].name: img[None, :, :, :]} output = session.run(None, ort_inputs) predictions = postprocess(output[0], input_shape)[0] boxes = predictions[:, :4] scores = predictions[:, 4:5] * predictions[:, 5:] boxes_xyxy = np.ones_like(boxes) boxes_xyxy[:, 0] = boxes[:, 0] - boxes[:, 2] / 2. boxes_xyxy[:, 1] = boxes[:, 1] - boxes[:, 3] / 2. boxes_xyxy[:, 2] = boxes[:, 0] + boxes[:, 2] / 2. boxes_xyxy[:, 3] = boxes[:, 1] + boxes[:, 3] / 2. boxes_xyxy /= ratio dets = multiclass_nms(boxes_xyxy, scores, nms_thr=0.45, score_thr=0.1) if dets is not None: detect_result = detect_watermark(dets, watermark_box) return detect_result else: return False def postprocess(outputs, img_size, p6=False): grids = [] expanded_strides = [] strides = [8, 16, 32] if not p6 else [8, 16, 32, 64] hsizes = [img_size[0] // stride for stride in strides] wsizes = [img_size[1] // stride for stride in strides] for hsize, wsize, stride in zip(hsizes, wsizes, strides): xv, yv = np.meshgrid(np.arange(wsize), np.arange(hsize)) grid = np.stack((xv, yv), 2).reshape(1, -1, 2) grids.append(grid) shape = grid.shape[:2] expanded_strides.append(np.full((*shape, 1), stride)) grids = np.concatenate(grids, 1) expanded_strides = np.concatenate(expanded_strides, 1) outputs[..., :2] = (outputs[..., :2] + grids) * expanded_strides outputs[..., 2:4] = np.exp(outputs[..., 2:4]) * expanded_strides return outputs def nms(boxes, scores, nms_thr): """Single class NMS implemented in Numpy.""" x1 = boxes[:, 0] y1 = boxes[:, 1] x2 = boxes[:, 2] y2 = boxes[:, 3] areas = (x2 - x1 + 1) * (y2 - y1 + 1) order = scores.argsort()[::-1] keep = [] while order.size > 0: i = order[0] keep.append(i) xx1 = np.maximum(x1[i], x1[order[1:]]) yy1 = np.maximum(y1[i], y1[order[1:]]) xx2 = np.minimum(x2[i], x2[order[1:]]) yy2 = np.minimum(y2[i], y2[order[1:]]) w = np.maximum(0.0, xx2 - xx1 + 1) h = np.maximum(0.0, yy2 - yy1 + 1) inter = w * h ovr = inter / (areas[i] + areas[order[1:]] - inter) inds = np.where(ovr <= nms_thr)[0] order = order[inds + 1] return keep def multiclass_nms_class_agnostic(boxes, scores, nms_thr, score_thr): """Multiclass NMS implemented in Numpy. Class-agnostic version.""" cls_inds = scores.argmax(1) cls_scores = scores[np.arange(len(cls_inds)), cls_inds] valid_score_mask = cls_scores > score_thr if valid_score_mask.sum() == 0: return None valid_scores = cls_scores[valid_score_mask] valid_boxes = boxes[valid_score_mask] valid_cls_inds = cls_inds[valid_score_mask] keep = nms(valid_boxes, valid_scores, nms_thr) if keep: dets = np.concatenate( [valid_boxes[keep], valid_scores[keep, None], valid_cls_inds[keep, None]], 1 ) return dets def multiclass_nms_class_aware(boxes, scores, nms_thr, score_thr): """Multiclass NMS implemented in Numpy. Class-aware version.""" final_dets = [] num_classes = scores.shape[1] for cls_ind in range(num_classes): cls_scores = scores[:, cls_ind] valid_score_mask = cls_scores > score_thr if valid_score_mask.sum() == 0: continue else: valid_scores = cls_scores[valid_score_mask] valid_boxes = boxes[valid_score_mask] keep = nms(valid_boxes, valid_scores, nms_thr) if len(keep) > 0: cls_inds = np.ones((len(keep), 1)) * cls_ind dets = np.concatenate( [valid_boxes[keep], valid_scores[keep, None], cls_inds], 1 ) final_dets.append(dets) if len(final_dets) == 0: return None return np.concatenate(final_dets, 0) def multiclass_nms(boxes, scores, nms_thr, score_thr, class_agnostic=True): """Multiclass NMS implemented in Numpy""" if class_agnostic: nms_method = multiclass_nms_class_agnostic else: nms_method = multiclass_nms_class_aware return nms_method(boxes, scores, nms_thr, score_thr) def detect_watermark(dets, watermark_box, threshold=0.5): if dets.size == 0: # 检查是否为空 return False for box, score, cls in zip(dets[:, :4], dets[:, 4], dets[:, 5]): wm_box_coords = watermark_box[:4] wm_cls = watermark_box[4] if cls == wm_cls: ciou = calculate_ciou(box, wm_box_coords) if ciou > threshold: return True return False