""" 定义图像分类推理流程 """ import numpy as np from PIL import Image import onnxruntime as ort class ClassificationInference: def __init__(self, model_path, input_size=(224, 224), swap=(2, 0, 1)): """ 初始化图像分类模型推理流程 :param model_path: 图像分类模型onnx文件路径 :param input_size: 模型输入大小 :param swap: 变换方式,pytorch需要进行轴变换(默认参数),tensorflow无需进行轴变换 """ self.model_path = model_path self.input_size = input_size self.swap = swap def input_processing(self, image_path): """ 对单个图像输入进行处理 :param image_path: 图像路径 :return: 处理后输出 """ # 打开图像并转换为RGB image = Image.open(image_path).convert("RGB") # 调整图像大小 image = image.resize(self.input_size) # 转换为numpy数组并归一化 image_array = np.array(image) / 255.0 # 将像素值缩放到[0, 1] # 进行标准化 mean = np.array([0.485, 0.456, 0.406]) std = np.array([0.229, 0.224, 0.225]) image_array = (image_array - mean) / std image_array = image_array.transpose(self.swap).copy() return image_array.astype(np.float32) def predict(self, image_path): """ 对单张图片进行推理 :param image_path: 图片路径 :return: 推理结果 """ session = ort.InferenceSession(self.model_path) # 加载 ONNX 模型 input_name = session.get_inputs()[0].name image = self.input_processing(image_path) # 执行预测 outputs = session.run(None, {input_name: np.expand_dims(image, axis=0)}) return outputs def predict_batch(self, image_paths): """ 对指定图片列表进行批量推理 :param image_paths: 待推理的图片路径列表 :return: 批量推理结果 """ session = ort.InferenceSession(self.model_path) # 加载 ONNX 模型 input_name = session.get_inputs()[0].name batch_images = [] for image_path in image_paths: image = self.input_processing(image_path) batch_images.append(image) # 将批次图片堆叠成 (batch_size, 3, 224, 224) 维度 batch_images = np.stack(batch_images) # 执行预测 outputs = session.run(None, {input_name: batch_images}) return outputs