""" yolox基于pytorch框架的黑盒水印处理验证流程 """ import os import cv2 from watermark_verify.inference.yolox_inference import YOLOXInference from watermark_verify.process.general_process_define import BlackBoxWatermarkProcessDefine from watermark_verify.tools import parse_qrcode_label_file from watermark_verify.tools.evaluate_tool import calculate_ciou class ModelWatermarkProcessor(BlackBoxWatermarkProcessDefine): def __init__(self, model_filename): super(ModelWatermarkProcessor, self).__init__(model_filename) def process(self) -> bool: """ 根据流程定义进行处理,并返回模型标签验证结果 :return: 模型标签验证结果 """ # 获取权重文件,使用触发集进行模型推理, 将推理结果与触发集预先二维码保存位置进行比对,在误差范围内则进行下一步,否则返回False cls_image_mapping = parse_qrcode_label_file.parse_labels(self.qrcode_positions_file) accessed_cls = set() for cls, images in cls_image_mapping.items(): for image in images: image_path = os.path.join(self.trigger_dir, image) detect_result = self.detect_secret_label(image_path, self.qrcode_positions_file, (640, 640)) if detect_result: accessed_cls.add(cls) break if not accessed_cls == set(cls_image_mapping.keys()): # 所有的分类都检测出模型水印,模型水印检测结果为True return False verify_result = self.verify_label() # 模型标签检测通过,进行标签验证 return verify_result def detect_secret_label(self, image_path, watermark_txt, input_shape) -> bool: """ 对模型使用触发集进行检查,判断是否存在黑盒模型水印,如果对嵌入水印的图片样本正确率高于阈值,证明模型存在黑盒水印 :param image_path: 输入图像路径 :param watermark_txt: 水印标签文件路径 :param input_shape: 模型输入图像大小,tuple :return: 检测结果 """ img = cv2.imread(image_path) height, width, channels = img.shape x_center, y_center, w, h, cls = parse_qrcode_label_file.load_watermark_info(watermark_txt, image_path) # 计算绝对坐标 x1 = (x_center - w / 2) * width y1 = (y_center - h / 2) * height x2 = (x_center + w / 2) * width y2 = (y_center + h / 2) * height watermark_box = [x1, y1, x2, y2, cls] if len(watermark_box) == 0: return False dets = YOLOXInference(self.model_filename,input_size=input_shape).predict(image_path) if dets is not None: detect_result = detect_watermark(dets, watermark_box) return detect_result else: return False def detect_watermark(dets, watermark_box, threshold=0.5): if dets.size == 0: # 检查是否为空 return False for box, score, cls in zip(dets[:, :4], dets[:, 4], dets[:, 5]): wm_box_coords = watermark_box[:4] wm_cls = watermark_box[4] if cls == wm_cls: ciou = calculate_ciou(box, wm_box_coords) if ciou > threshold: return True return False