123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159 |
- import os
- import numpy as np
- from PIL import Image
- from watermark_verify import logger
- from watermark_verify.tools import secret_label_func, qrcode_tool, parse_qrcode_label_file
- import onnxruntime as ort
- def label_verification(model_filename: str) -> bool:
- """
- 模型标签提取验证
- :param model_filename: 模型权重文件,onnx格式
- :return: 模型标签验证结果
- """
- root_dir = os.path.dirname(model_filename)
- logger.info(f"开始检测模型水印, model_filename: {model_filename}, root_dir: {root_dir}")
- # step 1 获取触发集目录,公钥信息
- trigger_dir = os.path.join(root_dir, 'trigger')
- public_key_txt = os.path.join(root_dir, 'keys', 'public.key')
- if not os.path.exists(trigger_dir):
- logger.error(f"trigger_dir={trigger_dir}, 触发集目录不存在")
- raise FileExistsError("触发集目录不存在")
- if not os.path.exists(public_key_txt):
- logger.error(f"public_key_txt={public_key_txt}, 签名公钥文件不存在")
- raise FileExistsError("签名公钥文件不存在")
- with open(public_key_txt, 'r') as file:
- public_key = file.read()
- logger.debug(f"trigger_dir={trigger_dir}, public_key_txt={public_key_txt}, public_key={public_key}")
- if not public_key or public_key == '':
- logger.error(f"获取的签名公钥信息为空, public_key={public_key}")
- raise RuntimeError("获取的签名公钥信息为空")
- qrcode_positions_file = os.path.join(trigger_dir, 'qrcode_positions.txt')
- if not os.path.exists(qrcode_positions_file):
- raise FileNotFoundError("二维码标签文件不存在")
- # step 2 获取权重文件,使用触发集批量进行模型推理, 如果某个批次的准确率大于阈值,则比对成功进行下一步,否则返回False
- # 加载 ONNX 模型
- session = ort.InferenceSession(model_filename)
- for i in range(0,2):
- image_dir = os.path.join(trigger_dir, 'images', str(i))
- if not os.path.exists(image_dir):
- logger.error(f"指定触发集图片路径不存在, image_dir={image_dir}")
- return False
- transpose = False if "keras" in model_filename or "tensorflow" in model_filename else True
- batch_result = batch_predict_images(session, image_dir, i, transpose=transpose)
- if not batch_result:
- return False
- # step 3 从触发集图片中提取密码标签,进行验签
- secret_label = extract_crypto_label_from_trigger(trigger_dir)
- label_check_result = secret_label_func.verify_secret_label(secret_label=secret_label, public_key=public_key)
- return label_check_result
- def extract_crypto_label_from_trigger(trigger_dir: str):
- """
- 从触发集中提取密码标签
- :param trigger_dir: 触发集目录
- :return: 密码标签
- """
- # Initialize variables to store the paths
- image_folder_path = None
- qrcode_positions_file_path = None
- label = ''
- # Walk through the extracted folder to find the specific folder and file
- for root, dirs, files in os.walk(trigger_dir):
- if 'images' in dirs:
- image_folder_path = os.path.join(root, 'images')
- if 'qrcode_positions.txt' in files:
- qrcode_positions_file_path = os.path.join(root, 'qrcode_positions.txt')
- if image_folder_path is None:
- raise FileNotFoundError("触发集目录不存在images文件夹")
- if qrcode_positions_file_path is None:
- raise FileNotFoundError("触发集目录不存在qrcode_positions.txt")
- sub_image_dir_names = os.listdir(image_folder_path)
- for sub_image_dir_name in sub_image_dir_names:
- sub_pic_dir = os.path.join(image_folder_path, sub_image_dir_name)
- images = os.listdir(sub_pic_dir)
- for image in images:
- img_path = os.path.join(sub_pic_dir, image)
- watermark_box = parse_qrcode_label_file.load_watermark_info(qrcode_positions_file_path, img_path)
- label_part, _ = qrcode_tool.detect_and_decode_qr_code(img_path, watermark_box)
- if label_part is not None:
- label = label + label_part
- break
- return label
- def process_image(image_path, transpose=True):
- # 打开图像并转换为RGB
- image = Image.open(image_path).convert("RGB")
- # 调整图像大小
- image = image.resize((224, 224))
- # 转换为numpy数组并归一化
- image_array = np.array(image) / 255.0 # 将像素值缩放到[0, 1]
- # 进行标准化
- mean = np.array([0.485, 0.456, 0.406])
- std = np.array([0.229, 0.224, 0.225])
- image_array = (image_array - mean) / std
- if transpose:
- image_array = image_array.transpose((2, 0, 1)).copy()
- return image_array.astype(np.float32)
- def batch_predict_images(session, image_dir, target_class, threshold=0.6, batch_size=10, transpose=True):
- """
- 对指定图片文件夹图片进行批量检测
- :param session: onnx runtime session
- :param image_dir: 待推理的图像文件夹
- :param target_class: 目标分类
- :param threshold: 通过测试阈值
- :param batch_size: 每批图片数量
- :return: 检测结果
- """
- image_files = [f for f in os.listdir(image_dir) if f.lower().endswith(('.png', '.jpg', '.jpeg'))]
- results = {}
- input_name = session.get_inputs()[0].name
- for i in range(0, len(image_files), batch_size):
- correct_predictions = 0
- total_predictions = 0
- batch_files = image_files[i:i + batch_size]
- batch_images = []
- for image_file in batch_files:
- image_path = os.path.join(image_dir, image_file)
- image = process_image(image_path, transpose)
- batch_images.append(image)
- # 将批次图片堆叠成 (batch_size, 3, 224, 224) 维度
- batch_images = np.stack(batch_images)
- # 执行预测
- outputs = session.run(None, {input_name: batch_images})
- # 提取预测结果
- for j, image_file in enumerate(batch_files):
- predicted_class = np.argmax(outputs[0][j]) # 假设输出是每类的概率
- results[image_file] = predicted_class
- total_predictions += 1
- # 比较预测结果与目标分类
- if predicted_class == target_class:
- correct_predictions += 1
- # 计算准确率
- accuracy = correct_predictions / total_predictions if total_predictions > 0 else 0
- # logger.debug(f"Predicted batch {i // batch_size + 1}, Accuracy: {accuracy * 100:.2f}%")
- if accuracy >= threshold:
- logger.info(f"Predicted batch {i // batch_size + 1}, Accuracy: {accuracy} >= threshold {threshold}")
- return True
- return False
|