123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132 |
- """
- ssd基于pytorch框架的黑盒水印处理验证流程
- """
- import os
- import numpy as np
- import onnxruntime
- from PIL import Image
- from watermark_verify.process.general_process_define import BlackBoxWatermarkProcessDefine
- from watermark_verify.tools import parse_qrcode_label_file
- from watermark_verify.tools.evaluate_tool import calculate_ciou
- from watermark_verify.utils.anchors import get_anchors
- from watermark_verify.utils.utils_bbox import BBoxUtility
- class ClassificationProcess(BlackBoxWatermarkProcessDefine):
- def __init__(self, model_filename):
- super(ClassificationProcess, self).__init__(model_filename)
- def process(self) -> bool:
- # 获取权重文件,使用触发集进行模型推理, 将推理结果与触发集预先二维码保存位置进行比对,在误差范围内则进行下一步,否则返回False
- cls_image_mapping = parse_qrcode_label_file.parse_labels(self.qrcode_positions_file)
- accessed_cls = set()
- for cls, images in cls_image_mapping.items():
- for image in images:
- image_path = os.path.join(self.trigger_dir, image)
- detect_result = self.detect_secret_label(image_path, self.model_filename, self.qrcode_positions_file,
- (300, 300))
- if detect_result:
- accessed_cls.add(cls)
- break
- if not accessed_cls == set(cls_image_mapping.keys()): # 所有的分类都检测出模型水印,模型水印检测结果为True
- return False
- verify_result = self.verify_label() # 模型标签检测通过,进行标签验证
- return verify_result
- def preprocess_image(self, image_path, input_size, swap=(2, 0, 1)):
- image = Image.open(image_path)
- image_shape = np.array(np.shape(image)[0:2])
- # ---------------------------------------------------------#
- # 在这里将图像转换成RGB图像,防止灰度图在预测时报错。
- # 代码仅仅支持RGB图像的预测,所有其它类型的图像都会转化成RGB
- # ---------------------------------------------------------#
- if not (len(np.shape(image)) == 3 and np.shape(image)[2] == 3):
- image = image.convert('RGB')
- image_data = resize_image(image, input_size, False)
- image_data = np.expand_dims(np.transpose(preprocess_input(np.array(image_data, dtype='float32')), swap).copy(), 0)
- image_data = image_data.astype('float32')
- return image_data, image_shape
- def detect_secret_label(self, image_path, model_file, watermark_txt, input_shape) -> bool:
- """
- 使用指定onnx文件进行预测并进行黑盒水印检测
- :param image_path: 输入图像路径
- :param model_file: 模型文件路径
- :param watermark_txt: 水印标签文件路径
- :param input_shape: 模型输入图像大小,tuple
- :return:
- """
- image_data, image_shape = self.preprocess_image(image_path, input_shape)
- # 解析标签嵌入位置
- parse_label = parse_qrcode_label_file.load_watermark_info(watermark_txt, image_path)
- if len(parse_label) < 5:
- return False
- x_center, y_center, w, h, cls = parse_label
- # 计算绝对坐标
- height, width = image_shape
- x1 = (x_center - w / 2) * width
- y1 = (y_center - h / 2) * height
- x2 = (x_center + w / 2) * width
- y2 = (y_center + h / 2) * height
- watermark_box = [y1, x1, y2, x2, cls]
- if len(watermark_box) == 0:
- return False
- # 使用onnx进行推理
- session = onnxruntime.InferenceSession(model_file)
- ort_inputs = {session.get_inputs()[0].name: image_data}
- output = session.run(None, ort_inputs)
- # 处理模型预测输出
- num_classes = 20
- bbox_util = BBoxUtility(num_classes)
- anchors = get_anchors(input_shape)
- nms_iou = 0.45
- confidence = 0.5
- results = bbox_util.decode_box(output, anchors, image_shape, input_shape, False, nms_iou=nms_iou,
- confidence=confidence)
- if results is not None:
- detect_result = detect_watermark(results, watermark_box)
- return detect_result
- else:
- return False
- def resize_image(image, size, letterbox_image):
- iw, ih = image.size
- w, h = size
- if letterbox_image:
- scale = min(w / iw, h / ih)
- nw = int(iw * scale)
- nh = int(ih * scale)
- image = image.resize((nw, nh), Image.BICUBIC)
- new_image = Image.new('RGB', size, (128, 128, 128))
- new_image.paste(image, ((w - nw) // 2, (h - nh) // 2))
- else:
- new_image = image.resize((w, h), Image.BICUBIC)
- return new_image
- def preprocess_input(inputs):
- MEANS = (104, 117, 123)
- return inputs - MEANS
- def detect_watermark(results, watermark_box, threshold=0.5):
- # 解析输出结果
- if len(results[0]) == 0:
- return False
- top_label = np.array(results[0][:, 4], dtype='int32')
- top_conf = results[0][:, 5]
- top_boxes = results[0][:, :4]
- for box, score, cls in zip(top_boxes, top_conf, top_label):
- wm_box_coords = watermark_box[:4]
- wm_cls = watermark_box[4]
- if cls == wm_cls:
- ciou = calculate_ciou(box, wm_box_coords)
- if ciou > threshold:
- return True
- return False
|