verify_tool_accuracy_test.py 3.5 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677
  1. """
  2. 支持所有待测模型,对指定文件夹下所有模型文件进行水印检测,并进行模型水印准确率验证
  3. """
  4. import argparse
  5. import os
  6. from watermark_verify import verify_tool
  7. model_types = {
  8. "classification": [
  9. "alexnet","alexnet_keras", "vgg16", "vgg16_tensorflow", "googlenet", "resnet"
  10. ],
  11. "object_detection": [
  12. "ssd", "yolox", "faster-rcnn"
  13. ],
  14. }
  15. def find_onnx_files(root_dir):
  16. onnx_files = []
  17. # 遍历根目录及其子目录
  18. for dirpath, _, filenames in os.walk(root_dir):
  19. # 查找所有以 .onnx 结尾的文件
  20. for filename in filenames:
  21. if filename.endswith('.onnx'):
  22. # 获取完整路径并添加到列表
  23. onnx_files.append(os.path.join(dirpath, filename))
  24. return onnx_files
  25. def filter_model_dirs(model_dir, targets):
  26. for target in targets:
  27. if target in model_dir:
  28. return True
  29. return False
  30. if __name__ == '__main__':
  31. parser = argparse.ArgumentParser(description='模型标签验证准确率验证脚本')
  32. parser.add_argument('--target_dir', default="origin_models", type=str, help='模型文件存放根目录,支持子文件夹递归处理')
  33. parser.add_argument('--model_type', default=None, type=str, help='按照模型分类过滤,用于区分是目标检测模型还是图像分类模型,可选参数:classification、objection_detect')
  34. parser.add_argument('--model_value', default=None, type=str, help='按照模型名称过滤,可选参数:alexnet、googlenet、resnet、vgg16、ssd、yolox、rcnn')
  35. parser.add_argument('--model_file_filter', default=None, type=str, help='按照模型文件名过滤, 比如剪枝模型文件名存在prune。默认为None')
  36. parser.add_argument('--except_result', default=None, type=str, help='模型推理预期结果。默认为None')
  37. args, _ = parser.parse_known_args()
  38. if args.target_dir is None:
  39. raise Exception("模型目录参数不可为空")
  40. if args.model_type is None:
  41. raise Exception("模型类型参数不可为空")
  42. if args.except_result is None:
  43. raise Exception("模型推理预期结果不可为空")
  44. # 获取所有模型目录信息
  45. model_dirs = [item for item in os.listdir(args.target_dir) if os.path.isdir(os.path.join(args.target_dir, item))]
  46. if args.model_type:
  47. filter_models = model_types[args.model_type]
  48. model_dirs = [item for item in model_dirs if filter_model_dirs(item, filter_models)]
  49. if args.model_value:
  50. model_dirs = [item for item in model_dirs if args.model_value.lower() in item.lower()]
  51. # 遍历符合条件的模型目录列表,进行标签提取检测,并记录准确率
  52. for model_dir in model_dirs:
  53. total = 0
  54. correct = 0
  55. onnx_files = find_onnx_files(os.path.join(args.target_dir, model_dir))
  56. onnx_files = [os.path.abspath(item) for item in onnx_files]
  57. if args.model_file_filter:
  58. onnx_files = [item for item in onnx_files if args.model_file_filter in item]
  59. else:
  60. onnx_files = [item for item in onnx_files if "pruned" not in item]
  61. print(f"model_name: {model_dir}\nonnx_files:")
  62. print(*onnx_files, sep='\n')
  63. for onnx_file in onnx_files:
  64. verify_result = verify_tool.label_verification(onnx_file)
  65. total += 1
  66. if str(verify_result) == args.except_result:
  67. correct += 1
  68. print(f"model_name: {model_dir}, accuracy: {correct * 100.0 / total}%")