12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485 |
- import numpy as np
- def calculate_ciou(box1, box2):
- """计算CIoU,假设box格式为[x1, y1, x2, y2]"""
- x1, y1, x2, y2 = box1
- x1g, y1g, x2g, y2g = box2
- # 求交集面积
- xi1, yi1 = max(x1, x1g), max(y1, y1g)
- xi2, yi2 = min(x2, x2g), min(y2, y2g)
- inter_area = max(0, xi2 - xi1) * max(0, yi2 - yi1)
- # 求各自面积
- box_area = (x2 - x1) * (y2 - y1)
- boxg_area = (x2g - x1g) * (y2g - y1g)
- # 求并集面积
- union_area = box_area + boxg_area - inter_area
- # 求IoU
- iou = inter_area / union_area
- # 求CIoU额外项
- cw = max(x2, x2g) - min(x1, x1g)
- ch = max(y2, y2g) - min(y1, y1g)
- c2 = cw ** 2 + ch ** 2
- rho2 = ((x1 + x2 - x1g - x2g) ** 2 + (y1 + y2 - y1g - y2g) ** 2) / 4
- ciou = iou - (rho2 / c2)
- return ciou
- def calculate_iou(box1, box2):
- # 计算IoU的基础方法
- inter_x_min = max(box1[0], box2[0])
- inter_y_min = max(box1[1], box2[1])
- inter_x_max = min(box1[2], box2[2])
- inter_y_max = min(box1[3], box2[3])
- inter_area = max(0, inter_x_max - inter_x_min) * max(0, inter_y_max - inter_y_min)
- box1_area = (box1[2] - box1[0]) * (box1[3] - box1[1])
- box2_area = (box2[2] - box2[0]) * (box2[3] - box2[1])
- union_area = box1_area + box2_area - inter_area
- iou = inter_area / union_area if union_area > 0 else 0
- return iou
- def calculate_giou(box1, box2):
- iou = calculate_iou(box1, box2)
- # 计算最小外包围矩形
- c_x_min = min(box1[0], box2[0])
- c_y_min = min(box1[1], box2[1])
- c_x_max = max(box1[2], box2[2])
- c_y_max = max(box1[3], box2[3])
- c_area = (c_x_max - c_x_min) * (c_y_max - c_y_min)
- giou = iou - (
- c_area - (box1[2] - box1[0]) * (box1[3] - box1[1]) - (box2[2] - box2[0]) * (box2[3] - box2[1])) / c_area
- return giou
- def calculate_diou(box1, box2):
- iou = calculate_iou(box1, box2)
- # 计算中心点的距离
- box1_center = [(box1[0] + box1[2]) / 2, (box1[1] + box1[3]) / 2]
- box2_center = [(box2[0] + box2[2]) / 2, (box2[1] + box2[3]) / 2]
- center_distance = np.sum(np.square(np.array(box1_center) - np.array(box2_center)))
- # 计算最小外包围矩形的对角线距离
- c_x_min = min(box1[0], box2[0])
- c_y_min = min(box1[1], box2[1])
- c_x_max = max(box1[2], box2[2])
- c_y_max = max(box1[3], box2[3])
- c_diag_distance = np.sum(np.square(np.array([c_x_max, c_y_max]) - np.array([c_x_min, c_y_min])))
- diou = iou - center_distance / c_diag_distance
- return diou
|