123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142 |
- import numpy as np
- class AnchorBox():
- def __init__(self, input_shape, min_size, max_size=None, aspect_ratios=None, flip=True):
- self.input_shape = input_shape
- self.min_size = min_size
- self.max_size = max_size
- self.aspect_ratios = []
- for ar in aspect_ratios:
- self.aspect_ratios.append(ar)
- self.aspect_ratios.append(1.0 / ar)
- def call(self, layer_shape, mask=None):
- # --------------------------------- #
- # 获取输入进来的特征层的宽和高
- # 比如38x38
- # --------------------------------- #
- layer_height = layer_shape[0]
- layer_width = layer_shape[1]
- # --------------------------------- #
- # 获取输入进来的图片的宽和高
- # 比如300x300
- # --------------------------------- #
- img_height = self.input_shape[0]
- img_width = self.input_shape[1]
- box_widths = []
- box_heights = []
- # --------------------------------- #
- # self.aspect_ratios一般有两个值
- # [1, 1, 2, 1/2]
- # [1, 1, 2, 1/2, 3, 1/3]
- # --------------------------------- #
- for ar in self.aspect_ratios:
- # 首先添加一个较小的正方形
- if ar == 1 and len(box_widths) == 0:
- box_widths.append(self.min_size)
- box_heights.append(self.min_size)
- # 然后添加一个较大的正方形
- elif ar == 1 and len(box_widths) > 0:
- box_widths.append(np.sqrt(self.min_size * self.max_size))
- box_heights.append(np.sqrt(self.min_size * self.max_size))
- # 然后添加长方形
- elif ar != 1:
- box_widths.append(self.min_size * np.sqrt(ar))
- box_heights.append(self.min_size / np.sqrt(ar))
- # --------------------------------- #
- # 获得所有先验框的宽高1/2
- # --------------------------------- #
- box_widths = 0.5 * np.array(box_widths)
- box_heights = 0.5 * np.array(box_heights)
- # --------------------------------- #
- # 每一个特征层对应的步长
- # --------------------------------- #
- step_x = img_width / layer_width
- step_y = img_height / layer_height
- # --------------------------------- #
- # 生成网格中心
- # --------------------------------- #
- linx = np.linspace(0.5 * step_x, img_width - 0.5 * step_x,
- layer_width)
- liny = np.linspace(0.5 * step_y, img_height - 0.5 * step_y,
- layer_height)
- centers_x, centers_y = np.meshgrid(linx, liny)
- centers_x = centers_x.reshape(-1, 1)
- centers_y = centers_y.reshape(-1, 1)
- # 每一个先验框需要两个(centers_x, centers_y),前一个用来计算左上角,后一个计算右下角
- num_anchors_ = len(self.aspect_ratios)
- anchor_boxes = np.concatenate((centers_x, centers_y), axis=1)
- anchor_boxes = np.tile(anchor_boxes, (1, 2 * num_anchors_))
- # 获得先验框的左上角和右下角
- anchor_boxes[:, ::4] -= box_widths
- anchor_boxes[:, 1::4] -= box_heights
- anchor_boxes[:, 2::4] += box_widths
- anchor_boxes[:, 3::4] += box_heights
- # --------------------------------- #
- # 将先验框变成小数的形式
- # 归一化
- # --------------------------------- #
- anchor_boxes[:, ::2] /= img_width
- anchor_boxes[:, 1::2] /= img_height
- anchor_boxes = anchor_boxes.reshape(-1, 4)
- anchor_boxes = np.minimum(np.maximum(anchor_boxes, 0.0), 1.0)
- return anchor_boxes
- #---------------------------------------------------#
- # 用于计算共享特征层的大小
- #---------------------------------------------------#
- def get_vgg_output_length(height, width):
- filter_sizes = [3, 3, 3, 3, 3, 3, 3, 3]
- padding = [1, 1, 1, 1, 1, 1, 0, 0]
- stride = [2, 2, 2, 2, 2, 2, 1, 1]
- feature_heights = []
- feature_widths = []
- for i in range(len(filter_sizes)):
- height = (height + 2*padding[i] - filter_sizes[i]) // stride[i] + 1
- width = (width + 2*padding[i] - filter_sizes[i]) // stride[i] + 1
- feature_heights.append(height)
- feature_widths.append(width)
- return np.array(feature_heights)[-6:], np.array(feature_widths)[-6:]
-
- def get_mobilenet_output_length(height, width):
- filter_sizes = [3, 3, 3, 3, 3, 3, 3, 3, 3]
- padding = [1, 1, 1, 1, 1, 1, 1, 1, 1]
- stride = [2, 2, 2, 2, 2, 2, 2, 2, 2]
- feature_heights = []
- feature_widths = []
- for i in range(len(filter_sizes)):
- height = (height + 2*padding[i] - filter_sizes[i]) // stride[i] + 1
- width = (width + 2*padding[i] - filter_sizes[i]) // stride[i] + 1
- feature_heights.append(height)
- feature_widths.append(width)
- return np.array(feature_heights)[-6:], np.array(feature_widths)[-6:]
- def get_anchors(input_shape = [300,300], anchors_size = [30, 60, 111, 162, 213, 264, 315], backbone = 'vgg'):
- if backbone == 'vgg':
- feature_heights, feature_widths = get_vgg_output_length(input_shape[0], input_shape[1])
- aspect_ratios = [[1, 2], [1, 2, 3], [1, 2, 3], [1, 2, 3], [1, 2], [1, 2]]
- else:
- feature_heights, feature_widths = get_mobilenet_output_length(input_shape[0], input_shape[1])
- aspect_ratios = [[1, 2, 3], [1, 2, 3], [1, 2, 3], [1, 2, 3], [1, 2, 3], [1, 2, 3]]
-
- anchors = []
- for i in range(len(feature_heights)):
- anchor_boxes = AnchorBox(input_shape, anchors_size[i], max_size = anchors_size[i+1],
- aspect_ratios = aspect_ratios[i]).call([feature_heights[i], feature_widths[i]])
- anchors.append(anchor_boxes)
- anchors = np.concatenate(anchors, axis=0)
- return anchors.astype(np.float32)
|