verify_tool_accuracy_test.py 5.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111
  1. """
  2. 支持所有待测模型,对指定文件夹下所有模型文件进行水印检测,并进行模型水印准确率验证
  3. """
  4. import argparse
  5. import os
  6. # 获取模型层数使用
  7. import onnx
  8. from watermark_verify import verify_tool_mix
  9. # model_types = {
  10. # "classification": [
  11. # "alexnet","alexnet_keras", "vgg16", "vgg16_tensorflow", "googlenet", "resnet"
  12. # ],
  13. # "object_detection": [
  14. # "ssd", "yolox", "faster-rcnn"
  15. # ],
  16. # }
  17. # 获取模型层数函数
  18. def get_onnx_layer_info(onnx_path):
  19. try:
  20. model = onnx.load(onnx_path)
  21. nodes = model.graph.node
  22. total_layers = len(nodes)
  23. return total_layers
  24. except Exception as e:
  25. print(f"[!] 读取模型层数失败: {onnx_path}\n原因: {e}")
  26. return False
  27. def find_onnx_files(root_dir):
  28. onnx_files = []
  29. # 遍历根目录及其子目录
  30. for dirpath, _, filenames in os.walk(root_dir):
  31. # 查找所有以 .onnx 结尾的文件
  32. for filename in filenames:
  33. if filename.endswith('.onnx'):
  34. # 获取完整路径并添加到列表
  35. onnx_files.append(os.path.join(dirpath, filename))
  36. return onnx_files
  37. def filter_model_dirs(model_dir, targets):
  38. for target in targets:
  39. if target in model_dir:
  40. return True
  41. return False
  42. if __name__ == '__main__':
  43. parser = argparse.ArgumentParser(description='模型标签验证准确率验证脚本')
  44. parser.add_argument('--target_dir', default="origin_models", type=str, help='模型文件存放根目录,支持子文件夹递归处理')
  45. # parser.add_argument('--model_type', default=None, type=str, help='按照模型分类过滤,用于区分是目标检测模型还是图像分类模型,可选参数:classification、objection_detect')
  46. parser.add_argument('--model_file_filter', default=None, type=str, help='按照模型文件名过滤, 比如剪枝模型文件名存在prune。默认为None')
  47. parser.add_argument('--except_result', default=None, type=str, help='模型推理预期结果。默认为None')
  48. parser.add_argument('--mode', default="blackbox", type=str, help='验证模式 (blackbox 或 whitebox), 默认为 blackbox')
  49. parser.add_argument('--model_type', default=None, type=str, help='按照模型名称过滤,可选参数:alexnet、googlenet、resnet、vgg16、ssd、yolox、rcnn')
  50. parser.add_argument('--framework', default=None, type=str, help='模型类型分类,支持分类模型和目标检测模型,可选参数:pytorch、tensorflow、keras')
  51. args, _ = parser.parse_known_args()
  52. if args.target_dir is None:
  53. raise Exception("模型目录参数不可为空")
  54. if args.model_type is None:
  55. raise Exception("模型类型参数不可为空")
  56. if args.mode is None:
  57. raise Exception("验证模式参数不可为空")
  58. if args.framework is None:
  59. raise Exception("框架类型参数不可为空")
  60. if args.except_result is None:
  61. raise Exception("模型推理预期结果不可为空")
  62. # 获取所有模型目录信息
  63. # model_dirs = [item for item in os.listdir(args.target_dir) if os.path.isdir(os.path.join(args.target_dir, item))]
  64. # if args.model_type:
  65. # filter_models = model_types[args.model_type]
  66. # model_dirs = [item for item in model_dirs if filter_model_dirs(item, filter_models)]
  67. # if args.model_value:
  68. # model_dirs = [item for item in model_dirs if args.model_value.lower() in item.lower()]
  69. model_dirs = [args.target_dir]
  70. # 遍历符合条件的模型目录列表,进行标签提取检测,并记录准确率
  71. for model_dir in model_dirs:
  72. total = 0
  73. correct = 0
  74. onnx_files = find_onnx_files(os.path.join(args.target_dir, model_dir))
  75. onnx_files = [os.path.abspath(item) for item in onnx_files]
  76. if args.model_file_filter:
  77. onnx_files = [item for item in onnx_files if args.model_file_filter in item]
  78. else:
  79. onnx_files = [item for item in onnx_files if "pruned" not in item]
  80. print(f"model_name: {model_dir}\nonnx_files:")
  81. print(*onnx_files, sep='\n')
  82. for onnx_file in onnx_files:
  83. # 打印模型层数信息
  84. total_layers = get_onnx_layer_info(onnx_file)
  85. print(f"ONNX模型层数统计({onnx_file}):")
  86. print(f"模型层数: {total_layers}")
  87. # verify_result = verify_tool.label_verification(onnx_file)
  88. # 调用验证工具进行标签验证
  89. verify_result = verify_tool_mix.label_verification(onnx_file, framework=args.framework, mode=args.mode, model_type=args.model_value)
  90. total += 1
  91. if str(verify_result) == args.except_result:
  92. correct += 1
  93. print(f"共验证: {total}个")
  94. print(f"验证成功: {correct}个")
  95. print(f"成功率计算说明:(验证成功个数 * 100.0 / 总验证个数)%")
  96. print("------------------准确率指标如下-------------------------")
  97. print(f"模型名称: {model_dir}, 准确率: {correct * 100.0 / total}%")