123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111 |
- """
- 支持所有待测模型,对指定文件夹下所有模型文件进行水印检测,并进行模型水印准确率验证
- """
- import argparse
- import os
- # 获取模型层数使用
- import onnx
- from watermark_verify import verify_tool_mix
- # model_types = {
- # "classification": [
- # "alexnet","alexnet_keras", "vgg16", "vgg16_tensorflow", "googlenet", "resnet"
- # ],
- # "object_detection": [
- # "ssd", "yolox", "faster-rcnn"
- # ],
- # }
- # 获取模型层数函数
- def get_onnx_layer_info(onnx_path):
- try:
- model = onnx.load(onnx_path)
- nodes = model.graph.node
- total_layers = len(nodes)
- return total_layers
- except Exception as e:
- print(f"[!] 读取模型层数失败: {onnx_path}\n原因: {e}")
- return False
- def find_onnx_files(root_dir):
- onnx_files = []
- # 遍历根目录及其子目录
- for dirpath, _, filenames in os.walk(root_dir):
- # 查找所有以 .onnx 结尾的文件
- for filename in filenames:
- if filename.endswith('.onnx'):
- # 获取完整路径并添加到列表
- onnx_files.append(os.path.join(dirpath, filename))
- return onnx_files
- def filter_model_dirs(model_dir, targets):
- for target in targets:
- if target in model_dir:
- return True
- return False
- if __name__ == '__main__':
- parser = argparse.ArgumentParser(description='模型标签验证准确率验证脚本')
- parser.add_argument('--target_dir', default="origin_models", type=str, help='模型文件存放根目录,支持子文件夹递归处理')
- # parser.add_argument('--model_type', default=None, type=str, help='按照模型分类过滤,用于区分是目标检测模型还是图像分类模型,可选参数:classification、objection_detect')
- parser.add_argument('--model_file_filter', default=None, type=str, help='按照模型文件名过滤, 比如剪枝模型文件名存在prune。默认为None')
- parser.add_argument('--except_result', default=None, type=str, help='模型推理预期结果。默认为None')
- parser.add_argument('--mode', default="blackbox", type=str, help='验证模式 (blackbox 或 whitebox), 默认为 blackbox')
- parser.add_argument('--model_type', default=None, type=str, help='按照模型名称过滤,可选参数:alexnet、googlenet、resnet、vgg16、ssd、yolox、rcnn')
- parser.add_argument('--framework', default=None, type=str, help='模型类型分类,支持分类模型和目标检测模型,可选参数:pytorch、tensorflow、keras')
- args, _ = parser.parse_known_args()
- if args.target_dir is None:
- raise Exception("模型目录参数不可为空")
- if args.model_type is None:
- raise Exception("模型类型参数不可为空")
- if args.mode is None:
- raise Exception("验证模式参数不可为空")
- if args.framework is None:
- raise Exception("框架类型参数不可为空")
- if args.except_result is None:
- raise Exception("模型推理预期结果不可为空")
- # 获取所有模型目录信息
- # model_dirs = [item for item in os.listdir(args.target_dir) if os.path.isdir(os.path.join(args.target_dir, item))]
- # if args.model_type:
- # filter_models = model_types[args.model_type]
- # model_dirs = [item for item in model_dirs if filter_model_dirs(item, filter_models)]
- # if args.model_value:
- # model_dirs = [item for item in model_dirs if args.model_value.lower() in item.lower()]
-
- model_dirs = [args.target_dir]
- # 遍历符合条件的模型目录列表,进行标签提取检测,并记录准确率
- for model_dir in model_dirs:
- total = 0
- correct = 0
- onnx_files = find_onnx_files(os.path.join(args.target_dir, model_dir))
- onnx_files = [os.path.abspath(item) for item in onnx_files]
- if args.model_file_filter:
- onnx_files = [item for item in onnx_files if args.model_file_filter in item]
- else:
- onnx_files = [item for item in onnx_files if "pruned" not in item]
- print(f"model_name: {model_dir}\nonnx_files:")
- print(*onnx_files, sep='\n')
- for onnx_file in onnx_files:
- # 打印模型层数信息
- total_layers = get_onnx_layer_info(onnx_file)
- print(f"ONNX模型层数统计({onnx_file}):")
- print(f"模型层数: {total_layers}")
- # verify_result = verify_tool.label_verification(onnx_file)
- # 调用验证工具进行标签验证
- verify_result = verify_tool_mix.label_verification(onnx_file, framework=args.framework, mode=args.mode, model_type=args.model_value)
- total += 1
- if str(verify_result) == args.except_result:
- correct += 1
- print(f"共验证: {total}个")
- print(f"验证成功: {correct}个")
- print(f"成功率计算说明:(验证成功个数 * 100.0 / 总验证个数)%")
- print("------------------准确率指标如下-------------------------")
- print(f"模型名称: {model_dir}, 准确率: {correct * 100.0 / total}%")
|